
BY THE U.S. GENERAL ACCOUNTING OFFICE
Report To The Administrator
Of General Services

Greater Emphasis On Testing
deeded To Make Computer
qoftware More Reliable And
L&s Costly
Feberal agencies spend billions of dollars
annually on computer software programs.
H wever, unless these programs receive
a 8, quate testing, federal managers cannot
be reasonably sure that they provide accu-
rate, reliable information and that computer
reSources are used efficiently and econom-
icflly.

GAO/IMTEC-84-2
OCTOBER 27, 1983

Request for copies of GAO reports should be
sent to:

U.S. General Accounting Off ice
Document Handling and Information

Services Facility
P.O. Box 6015
Gaithersburg, Md. 20760

Telephone (202) 275-6241

The first five copies of individual reports are
free of charge. Additional copies of bound
audit reports are $3.25 each. Additional
copies of unbound report (i.e., letter reports)
and most other publications are $1.00 each.
There will be a 25% discount on all orders for
100 or more copies mailed to a single address.
Sales orders must be prepaid on a cash, check,
or money order basis. Check should be made
out to the “Superintendent of Documents”.

UNITEDSTATESGENERALACCOUNTINGOFF~CE
WASHINGTON, D.C. 20548

INFORMATION MANAGEMENT
81 TECHNOLOQY DIVISION

B-206180

The Honorable Gerald P. Carmen
The Administrator of General Services

Dear Mr. Carmen:

This report discusses the adequacy and effectiveness of federal
agencies' software testing practices.

'We found that many improvements are needed in (1) the planning
for ADP software testing, including defining the testing procedures,
cjriteria, and techniques required before placing either agency- or
cbntractor-developed software into operation: (2) the process by
dhich the agencies monitor and enforce compliance with testing ob-
j(!ectives and strategies; and (3) the utilization of automated tools
and testing techniques.

We are sending copies of this report to the heads of federal
agencies.

Sincerely yours,

cm
Director*

GENERAL ACCOUNTING OFFICE GREATER EMPHASIS ON TESTING
REPORT TO THE ADMINISTRATOR NEEDED TO MAKE COMPUTER
OF GENERAL SERVICES SOFTWARE MORE RELIABLE

AND LESS COSTLY
DIGEST ------

Testing is a critical process in developing and
maintaining computer programs. The purpose of
testing is to detect errors before the programs
are put into operation. Inadequate testing
increases the potential for undetected errors and
reduces the extent to which the software can be
relied on to safeguard assets and provide accurate
information.

Considering the billions of dollars the federal
government spends on software and agencies'
reliance on it to perform their missions, soft-
ware testing does not receive appropriate manage-
ment emphasis. GAO based its findings on visits
to eight federal agencies and automatic data proc-
essing (ADP) installations and detailed reviews of
business application software--a program which
performs accounting, payroll, and related func-
tions. It also sent questionnaires to 600 ran-
domly selected federal ADP installations to obtain
information on the status of software testing at
those installations. That information was then
used to project the status of software testing
government-wide.

The Brooks Act (Public Law 89-306) assigned cer-
tain responsibilities for automatic data process-
ing to the General Services Administration, the
National Bureau of Standards, and the Office of
Management and Budget. The General Services
Administration is responsible for developing,
implementing, and monitoring government-wide
policy for the acquisition, use, and management of
ADP resources. The National Bureau of Standards
is responsible for providing scientific and tech-
nological advisory services and for developing
Federal Information Processsing Standards. The
Office of Management and Budget is responsible for
fiscal and policy control. In addition, each
federal agency has certain responsibilities for
managing its own ADP resources.

GAO/IMTEC-84-2
OCTOBER 27, 1983

AGENCIES NEED TO BETTER MANAGE
THE SOFTWARE TESTING PROCESS

GAO’s review showed that agencies do not always
adequately manage the overall testing process to
help ensure its effectiveness in producing accu-
rate and rel iable software. GAO observed testing
deficiencies at the eight agencies and install-
ations visited. In addition, responses to
questionnaires from 207 of the installations
surveyed indicate that these deficiencies are
government-wide.

Poor management practices GAO observed included
the fol lowing:

A-Agencies do not always enforce testing policies
and requirements. For example, required unit
and system testing for a payroll modification
was omitted because the programmer considered
the change minor. Corrective action for the
resulting error in this program required $10,000
for automatic data processing costs and caused
agency field offices to manually review about
5,000 pay accounts for potentially incorrect
payments, In addition, GAO’s survey of data
processing installations showed that other
testing-related requirements were not enforced.
For instance, 73 percent of the installations
reported they did not document their computer
programs according to National Bureau of
Standards guidelines. These guide1 ines include
the requirement that a test plan and a test
analysis report be prepared. (See pp. 6-7.)

--Agencies do not always provide those responsible
for testing with written guidance containing the
specific procedures, criteria, and techniques
required for testing agency software. GAO’s
survey of data processing installations showed
that only 44 percent said they had received
written guidance on testing of business applica-
tion software from their department or agency.
(See pp. 7-8.)

ii

--Agencies do not always collect and/or evaluate
data on software testing problems to improve the
testing process. GAO’s survey of data processing
installations confirmed that at least 65 percent
do not maintain such data. (See pp. g-10.)

--Agencies do not allow adequate time for the
planning and testing of business application
software. GAO found examples where the planned
time allotted for testing was insufficient,
so in order to deliver the products on time,
testing was reduced. GAO's survey of data
processing installations also showed that at
least 29 percent believed users did not allocate
enough time for testing in the development
process. (See pp. 10-12.)

--Agencies do not always require the use of
software tools and techniques--computer programs
to test the thoroughness and efficiency of
software testing in the testing process.
GAO found that only one of the eight agencies
reviewed required that software tools be used
in the testing process. GAO also found that
only 13 percent of the data processing
installations surveyed used software test tools.
(See pp. 12-14.)

Management must be able to rely on the testing
process to help ensure that the internal controls
in computer software are adequate and operating
properly. (See p. 14.)

POORLY TESTED SOFTWARE
IS COSTLY AND UNRELIABLE

According to an industry study, costs to correct
errors after software is put into operation may be
over 7 times higher than if detected during unit
testing, and 30 times higher than if detected
during design. (See pp. 21-22.) For example, just
one payroll system error required an agency to
review thousands of pay accounts and make cor-
rective payments manually. These errors also .

iii

’

lead to breakdowns in control over financial
assets. For instance, one agency’s automated
contract administration system exceeded contract
progress payment limits by more than $500,000
because of a programming error. The Government
lost interest on these funds and in one case had
to recover an overpayment of about $44,000 from a
contractor. (See p. 16.) These examples demon-
strate that poor testing increases the potential
for error and thus reduces software reliability.
Although testing cannot be expected to detect all
errors, the number of test cases and conditions
should be adequate to reasonably ensure that
software is error free. (See pp. 15-20.)

GAO also found that poor testing against user
needs, as well as limited user involvement in the’
testing process, contributed to costly software
probl ems. Such testing and user involvement helps
ensure that application systems will satisfy
current user needs and perform as intended. As a
result of poor testing, one agency failed to
detect that a system would not perform as the user
intended. Consequently, once it was in operation
the system had to be redesigned At additional
cost. (See p. 20.)

RECOMMENDATIONS

GAO recommends that the heads of federal agencies:

--Establish written software testing policies and
requirements defining the testing procedures,
criteria, and techniques required before placing
either agency- or contractor-developed software
into operation. These should include specific
requirements for user participation in the test-
ing process.

--Monitor and enforce compliance with these test-
ing policies and requirements.

--Periodical 1 y evaluate the software testing
process to determine (1) its effectiveness in
preventing errors and reducing costs associated
with error correction and (2) the appropriate
allocation of staff and computer resources
to software testing .

iv

--Identify and incorporate into the testing proc-
ess those automated tools and testing techniques
that can help the agency provide more thorough
testing and more efficient resource use. This
should include providing appropriate training on
these tools and techniques.

GAO also recommends that the Administrator of
General Services, through the Office of Software
Development, review selected software development
projects in Federal agencies to identify uses and
potential uses of software tools and techniques
that improve testing thoroughness and efficiency.
The Office should then report on these reviews to
provide guidance for agencies in incorporating
tools and techniques into their testing processes.

AGENCY COMMENTS AND OUR EVALUATION

GSA is in complete agreement with this report and
has, under its new Office of Software Development,
taken steps to improve the quality of software and
its testing by assisting agencies in accepting and
using state-of-the-art software technology. In
view of the billons of dollars spent annually on
software, however, GAO believes even more remains
to be done in improving this area. (See app. V.)

V

/

Contents

DIGEST

CHAPTER

Page

i

1 INTRODUCTION
Software testing defined
Earlier GAO reports note problems with

poorly tested software
Roles of various agencies
Objectives, scope, and methodology

2 AGENCIES NEED BETTER MANAGEMENT OF THE
SOFTWARE TESTING PROCESS

Agencies do not enforce testing
requirements

Agencies need supplemental testing
guidance

Agencies do not use software problem
data to evaluate testing

Managers can minimize the effects of time
and resource constraints on testing

Software testing helps ensure adequate
internal control systems

3 POOR TESTING RESULTS IN COSTLY AND
UNRELIABLE SOFTWARE

Costly errors and reduced software
reliability result from poor testing

Better testing against user requirements
is needed to ensure that software
meets user needs

Testing reduces the cost of error
correction

4 CONCLUSIONS AND RECOMMENDATIONS
Conclusions
Recommendations
Agency comments and our evaluation

1
1

2
3
3

5

5

7

9

10

14

15

15

20

21

23 '
23
24
24

APPENDIX

ADP

FIPS

GAO

GSA

NBS

OMB

I Agencies and installations visited and
surveyed

26

II Case studies 29

III Summary of questionnaire results 42

IV

V

Sampling methodology, data collection,
qua1 ity control, and projected results

September 14, 1983, letter from the
Administrator of General Services

57

64

ABBREVIATIONS

automatic data processing

Federal Information Processing Standards

General Accounting Office

General Services Administration

National Bureau of Standards

Office of Management and Budget

CHAPTER 1

INTRODUCTION

Software =-the programs or sets of instructions that run a
computer --is the most expensive component of computer resources.
Industry sources predict that by 1985 about 90 percent of automatic
data processing (ADP) costs will be attributable to software. For
the federal government, whose ADP costs are currently more than
$15 billion annually, this represents a sizable investment. Appli-
cation programs automate the tasks of end users, including such
business-related tasks as payroll or such scientific tasks as
simulations. Adequate testing of applications software can help
federal managers be reasonably assured that software will correctly
automate user needs and produce accurate and reliable results. It
can also help minimize the resources needed to correct both .
software errors and their effects.

This report discusses our review of software testing at
several federal agencies and installations, illustrates the costs
and effects of inadequate testing, and recommends improvements.

I SOFTWARE TESTING DEFINED

Software testing is the process of identifying program errors
by analysis or by executing a program on a computer using actual
or test data. Developing application software is a labor inten-
sive, error-prone process, and errors can be made both in deciding
what the programs should do and in writing them to do it. The
objective of testing is to find and correct these errors before the
software is put into operation to do the user’s work.

Testing can be either manual or automated. It can focus on
any of various software aspects including the requirements for the
software, the design specifications, the individual programs, or
the overal 1 system, which typically is several programs. Manual
testing techniques usually involve comparing the product of the
software against a list of test criteria, which include checks for
common errors. One manual test method is desk checking, where the
programmer or another person individually checks the program code.
An inspection is similar to desk checking except that a team, rath-
er than an individual, checks the software. In another method--the
walkthrough-- the programmer explains the system logic to a team
using test data.

.

In most automated testing, software is actually run on the
~ computer and the output is compared with expected results.
~ Generally, the test data include both invalid and unexpected data
~ as well as valid and expected data. Some types of automated
! testing include:

--Unit test. Testing an individual program.

--Integration test. Testing the several programs of a system
to see if they work together correctly.

1

--System test. Usually, testing to determine whether the
system meets user requirements and objectives.

--Acceptance test. Testing, usually performed by the user, to
compare the program or system with its initial requirements
and current user needs.

EARLIER GAO REPORTS NOTE PROBLEMS
WITH POORLY TESTED SOFTWARE

Past government-wide GAO reports have expressed our concern
with the lack of adequate software testing. In a 1979 report about
contractor-developed software, we pointed to the need for better
definition and enforcement of acceptance testing requirements for
contract work.' A 1980 report recommended that the General Ser-
vices Admini*stration (GSA) require contractor-developed software to
pass a standard inspection process which uses automated software
tools for testing and analysis.2 The report also recommended that
OMB require all federal agency heads to consider software quality
assurance in their agencies and, where cost beneficial, establish
an ongoing quality assurance function independent of software
developers, which the report said could be made part of an agency's
internal audit organization. And in 1981, a report on federal
agencies' maintenance of contract programs recommended that new
software be tested more thoroughly to remove defects in program
logic and thus help reduce the cost of maintenance work to fix
defects.3

Other reports issued on individual agencies' computer systems
noted programming problems that caused excessive data errors, in-
creased operating costs, and allowed millions in erroneous entitle-
ment payments to go unrecovered.4

1 "Contracting for Computer Software Development--Serious Problems
Require Management Attention to Avoid Wasting Additional Millions“
(FGMSD-80-4, Nov. 9, 1979). I)

2 "Wider Use of Better Computer Software Technology Can Improve
Management Control and Reduce Costs" (FGMSD-80-38, Apr. 29, 1980).

3 'Federal Agencies' Maintenance of Computer Programs: Expensive
and Undermanaged" (AFMD-81-25, Feb. 26, 1981).

4 *The Marine Corps Military Pay System: Too Many Errors and In-
efficiencies" (FGMSD-80-49, June 10, 1980) and "The Social Security
Administration Needs To Develop a Structured and Planned Approach
For Managing and Controlling the Design, Development, and Modifi-
cation of Its Supplemental Security Income Computerized System"
(HRD-80-5, Oct. 16, 1979).

2

Although we do not know the full extent to which federal
agencies took action on our recommendations in the above noted re-
ports, we do know that GSA, the National Bureau of Standards (NBS),
and the Office of Management and Budget (OMB) have taken appro-
priate action on some or all of the recommendations.

We are issuing this report to show the effects of poor testing
on the federal government's business application software. In gen-
eral, it recommends that federal agencies establish and enforce
#software testing policies and requirements, and periodically evalu-
'ate their effectiveness.

'ROLES OF VARIOUS AGENCIES I
The Brooks Act (Public Law 89-306), enacted in October 1965,

rprovides for the economic and efficient purchase, lease, main-
'tenance, operation, and use of ADP equipment. The responsibilities
under the act are assigned to several agencies. GSA is responsible
for developing, implementing, and monitoring government-wide policy
:for the acquisition, use, and management of ADP resources. The
IDepartment of Commerce, primarily through NBS, is responsible for
~providing scientific and technological advisory services and for
/developing Federal Information Processing Standards. OMB is
'responsible for fiscal and policy control. In addition, each
~federal agency has certain responsibilities for managing its own
~ADP resources.

I In our role of aiding the Congress, we are concerned with the
imanagement of federal ADP resources. Our past reports to the
,Congress have recommended improvements in ADP management both
~government-wide and at specific agencies.

iOBJECTIVESI SCOPE, AND METHODOLOGY
I

I The objective of our review was to determine the adequacy and
ieffectiveness of software testing practices federal agencies use to
'obtain business application software. We focused on business
application software because it represents more than 60 percent of

Jthe federal government's computer programs, and because it auto-
mates the processing transactions that affect the government's
financial resources and management information. From October 1981
to August 1982 we visited a total of eight selected federal agen-
cies and installations that depend on ADP to perform their mission.
(See app. I.) We reviewed their software testing policies and

~ procedures, and, where apropriate

--reviewed and analyzed logs containing information on ADP
system failures and programming errors and

I --interviewed both ADP personnel and application software
users to discuss agency testing policies and procedures and

I testing-related problems.

3

We also selected for analysis a total of 12 major business
application systems at the agencies and installations visited. For
each of these systems, we analyzed the specific software testing
the agencies conducted and any programming errors that occurred
after a system became operational. From these analyses we noted
instances in which poor testing practices had failed to detect
software errors. However, these examples do not necessarily imply
inadequate testing for all systems maintained at the specific data
processing installation or agency.

We used a questionnaire to survey 600 randomly selected fed-
eral ADP install at ions. Of the 477 responses received, 207 report-
ed at least one business application program. These 207 question-
naire responses represent 37 agencies. Based on this response, we
estimated that 1,526 of the 4,423 installations in our unLverse
have at least one business application program, and projected our
survey results to this number. Appendix III (see p. 42) presents
an overall summary of the survey results, and appendix IV (see p.
57) provides our sampling methodology.

Of the three central agencies under the Brooks Act, we
solicited formal comments from GSA because the majority of our
findings relate to GSA’s specific role in providing assis’tance to
agencies in accepting and using state-of-the-art software techno-
‘logy. In addition, we considered in our report the informal com-
ments of these agencies and installations on the case studies we
developed.

We agreed that the agencies and installations would not be
identified in this report, as the case studies represent typical
situations that are frequently encountered and are presented only
to illustrate their nature.

We performed this review in accordance with generally accepted
government audit standards.

CHAPTER 2

AGENCIES NEED BETTER MANAGEMENT

OF THE SOFTWARE TESTING PROCESS

Agencies do not manage software testing effectively,
considering the importance of testing in ensuring software accuracy
and reliability. This is at least partly because agencies do not
always (1) enforce their testing requirements, (2) give their staff
written guidance on testing policies and requirements, (3) use data
on software problems as feedback on the effectiveness of the test-
ing process, or (4) allow adequate time for planning and testing.
Consequently, not all software is adequately tested, and managers
cannot rely on the testing process to help assure that internal
control systems are appropriate and working properly.

AGENCIES DO NOT ENFORCE TESTING REQUIREMENTS

Most agencies have some specific procedures and techniques for
I testing software. However, we found that systems development man-

agers generally did not measure or enforce compliance with these
requirements. Therefore, these managers cannot be sure that agency
software consistently receives the required degree of testing.

The software testing procedures and techniques agencies
~ require include:

--Preparing written test plans and documenting test results.

--Performing specific types of testing (such as unit, systems,
or acceptance testing).

--Using specific testing techniques (such as walkthroughs,
desk checks, and reviews).

--Using automated test tools (that is, computer programs that
help test other programs).

~ Nevertheless, systems development staff sometimes decide for
I themselves what testing procedures or techniques will be used, with
~ little review by systems development managers. We found instances
~ where required test plans were not prepared, walkthroughs and re-
I views were not performed, unit and system tests were omitted or
~ curtailed, and required tests using automated testing tools were
(not administered.

In some cases these omissions contributed to testing
failure, and errors in the software were not detected before it
became operational. For instance, a programmer considered a
payroll system modification minor and chose to omit required unit
and system testing of the change. Managers did not enforce the
testing requirement, and after only limited group testing the modi-

5

fied program was put into operation. The program proved to have an
error and it cost $10,000 to correct and caused agency field of-
fices to manually review about 5,000 pay accounts for potentially
lrlcorrect payments.

In another example, an agency’s certification requirement was
not enforced. The agency requires that all new and modified pro-
grams be certified by a quality assurance staff before system test-
ing. The agency initiated the requirement in 1977; however, at the
time of our review, not all programs had been submitted for certif-
ication. A member of the quality control staff and a system devel-
opment official admitted that no one knows and they could not
estimate how many of the agency’s programs should have been submit-
ted for certification. The qua1 ity control staff member also
explained that managers in different divisions of the system devel-
opment group did not uniformly emphasize compliance with certifica-
tion requirements, and the quality assurance group did not enforce
the requirements. As a result, many programs have not been
certified.

Our survey of ADP installations also revealed that agencies
apparently do not enforce testing requirements. National Bureau of
Standards (NBS) guidelines for documentation of computer software
recommend that a test plan and a test analysis report be pre-
pared. 1 These documents help managers determine whether testing
requirements have been met.2 However, as the table of survey
responses below indicates, at least 73 percent of the installations
reported they do not have the required documentation.

1 “Guidelines for Documentation of Computer Programs and Automated
Data Systems,* Federal Information Processing Standards Publica-
tion (FIPS PUB) 38; Feb. 15, 1976.

2 According to the guidelines, the test plan should specify such
things as the testing milestones, schedule, and resource require-
ments; the specifications, descriptions, and procedures for all
tests; and rules for evaluating test results. The test analysis
report should identify the results and findings of each test in-
cluding any deficiencies noted and recommendations for corrections.

6

I.1 ;

.:-, ”

Programs documented
Installations (note a)

Number Percent

All or almost all programs 111 7
Most programs 52 3
About half the programs 22 1
Some programs 118 8
Few or no programs 1,105 73
No answer 118 8

Total

a/Based on a projected total of 1,526 installations with at
least one business application program.

The examples discussed above show that although testing
requirements exist, they are not always enforced. Without this
enforcement, neither system development managers nor agency mana-
gers can be sure that agency software receives adequate testing.

IAGENCIES NEED SUPPLEMENTAL
TESTING ammNcE

Agency testing guidance is needed to establish consistent
software policies and requirements agencywide and to communicate
these to ADP staff, users, and others in the agency. Our survey
showed at least 39 percent of the installations had received NBS
guidance on software testing, while at least 48 percent had not; 13
percent did not respond to the question. Specific NBS guidance on
software testing currently includes:

--"Computer Software Management: A Primer for Project
Management and Quality Control," NBS Special Pub1 ication
500-11; July 1977.

--"Validation, Verification, and Testing of Computer
Software,' NBS Special *Publication 500-75; February 1981.

-- "Planning for Software Validation, Verification, and
Testing," NBS Special Publication 500-98; November 1982.

--"Software Validation, Verification, and Testing Technique
and Tool ,Reference Guide," NBS Special Publication 500-93;
September 1982.

In addition, as discussed on page 6, NBS issued FIPS PUB 38, which
includes guidelines for criteria and content in preparing software
test plans and test analysis reports. However, we found that some
of the agencies we reviewed developed their own guidance in addi-
tion to the general guidance NBS provided. Our survey indicated
that at least 45 percent of the installations have not received
testing guidance from their agencies, while 44 percent have; 10

7

,*: .’

‘4
,’

,. 1 ‘.
/ ..J

percent did not respond to the question. Those who have received
agency guidance consider it more useful than other central testing
guidance.

Several agencies we reviewed had developed formal guidance
including agency policies, requirements, and standards for software
testing. For example, one systems development group prepared
guidelines on the procedures necessary to test a new or modified
system, from the initial tests of individual programs through
completion of system testing. The guidelines, to be used in
conjunction with other agency ADP manuals , govern test preparation,
execution, and review. They discuss the roles in the testing
process of the programmer, the systems analyst or computer
specialist, the development project leader, and the user. Also
included are requirements to use specialized testing programs,
considerations to note in preparing for and evaluating system
testing, and guidance for generating test data.

Our survey indicated that testing guidance provided at the
agency level may be more useful than that provided by NBS.
Forty-four percent of the installations reported they had received
some written guidance from their department or agency on testing
business application software. Of these, 81 percent indicated that
this guidance was of from moderate to very great use; to 48 percent
of those, it was of great or very great use. This contrasts with
the same installations' opinions of NBS guidance. Only 43 percent
of the installations receiving NBS guidance indicated it was of
from moderate to great use; and to only 10 percent of those was it
of great to very great use. The table below compares these survey
results.

Installations' Agency guidance NBS guidance
evaluation of use Number Percent Number Percent

Very great use 162 24 22 4
Great use 162 24 37 6
Moderate use 221 33 192 33
Some use 74 11 206 35
Little or no use 15 2 111 19
No answer 44 7 22 4

Total

s/Total does not add due to rounding of data.

Agency testing guidance can set the specific testing policies
and requirements for the agency. This guidance can help ensure
that the testing procedures, criteria, and techniques considered
necessary for adequate testing are used consistently for all agency
software. For example, one agency we reviewed had not developed
agencywide guidance, and we found that separate systems development
groups within the agency used different procedures and techniques
to test their software. One group required walkthroughs and one

8

did not; one used a standing user acceptance committee and the
other did not. While this does not necessarily indicate inadequate
testing by either group, these different procedures and approaches
make it difficult to assess the appropriateness of the testing that
was done.

AGENCIES DO NOT USE SOFTWARE PROBLEM
DATA TO EVALUATE TESTING

Agencies do not use data on software problems in operational
systems to help evaluate the testing process. Our review indicated
ithat the eight aqencies we reviewed did not keep adequate data on
isuch problems or use available data to provide feedback on software
itesting. Such feedback can help systems development managers
~determine the adequacy and effectiveness of existing testing poli-
~cies and requirements.

Information on the type and frequency of software errors can
indicate strengths and weaknesses either in the testing of a par-
ticular project or in the overall testing process. Other informa-
tion, such as the cost to repair software errors, can also show the
cost impact of inadequate testing. Despite the usefulness of this
information, our survey showed that most installations do not main-
tain this type of data. (See p. 50.) The following table, which
summarizes our survey results, shows data maintenance practices of
the projected installations for fiscal year 1981.

1,526 Projected Installations

Maintained Not maintained No answer
Type of data Number Percent Number Percent Number Percent

Types of soft-
ware failures 472 31 1,010 66 44 3

Frequency of
software
failures 450 30 1,039 68 37 2

Cost to repair
failures 170 11 1,297 85 59 4

The agencies and installations we visited also did not
generally maintain data on software problems and errors for analy-
sis. However, some agencies did have systems or procedures to
account for software development activities that could be used to
provide feedback on the testing process. For example, a systems
development group at one agency had an automated project control
system which contained information on its work projects, including
those initiated to correct programming errors. Using this system,
we identified and analyzed programming errors related to a
specific, ongoing modification project. Our analysis showed that
in the year following initiation of this project, about 980 staff
hours were needed to correct related programming errors. This
amounted to about one-fourth of the time used originally to make

9

modifications --about 3,800 hours. Systems development managers had
not used the project control system to provide this type of data,
but agreed that such feedback could be useful in evaluating testing
processes.

In another agency, ADP problems and software error8 are
recorded in (1) formal requests for assistance from the user and
(2) other reports of ADP difficulties prepared within the ADP
group. Information from user requests is summarized monthly by
type of problem and by computer system, but systems development
managers did not use this information to provide feedback on soft-
ware testing.

To demonstrate the potential use of this information, we
analyzed data on user assistance requests initiated from July 1981
to March 1982. For one of the systems reviewed at this agency, our
analysis showed that over a g-month period, 30 assistance requests
were classified as system design errors. In discussing our analy-
sis, a systems development project leader and a user representative
acknowledged that problems described in some of these assistance
requests were undetected in testing because test data and results
developed for particular modifications to this system were not
comprehensive.

These examples show that collecting and analyzing data on
software errors can help managers evaluate the effectiveness of
testing in preventing or reducing such errors. We believe that
doing so is essential in devising adequate software testing poli-
cies and requirements.

MANAGERS CAN MINIMIZE THE EFFECTS OF
TIME AND RESOURCE CONSTRAINTS ON TESTING

The amount of software testing done may be restricted by time
and schedule constraints or by the availability of trained staff.
However, such restrictions do not eliminate the need for adequate
testing. Managers should make the most of available resources
through adequate test planning and proper allocation of staff.
Other measures include increasing productivity by providing soft-
ware testing tools and by training staff in the use of testing
tools and techniques.

Project deadlines and development delays
cause reduced testing

Much of testing takes place in the latter stages of the
software development or modification process. Therefore, when
development or modification work falls behind schedule and the
user’s requirements make the planned delivery date relatively
inflexible, testing is sometimes reduced to permit timely
delivery. For instance, one agency implemented modifications to an
employee life insurance system despite known errors and untested
conditions. The agency chose to do so because changes in the law

10

covering the insurance program had to be incorporated as soon as
possible to minimize the effect of the changes on the agency's
annuity system.

In anothe#* example, a systems development group implementing a
major payroll modification asked the payroll department for test
data. The data were not provided in time to meet payroll process-
ing deadlines, and the development group was required to deliver
the modification without first testing this data. While we are not
aware of any errors as a result of the reduced testing, these exam-
ples show that testing can be slighted due to emphasis on delivery

schedules.

Failure to provide sufficient time for testing in the develop-
‘ment schedule is another reason why the software testing that is
done might be insufficient. Our survey of data processing install-
ations indicated that at least 29 percent of the installations
believed users did not allocate enough time in the development
process for testing. (See p. 49.)

, Time and schedule restrictions do not eliminate the need for
(adequate testing. The Variable Housing Allowance system discussed
~ on page 16, is an example of how errors can go undetected even when
i a system was tested, if that testing was inadequate. Agency man-
~ agement directed that the system be made operational without com-
(plete testing because further delay would result in nonpayment of
~ the allowance or would require use of expensive manual payment
~ procedures. This incomplete testing failed to detect a software

error that resulted in 750 incorrect pay accounts and required
I manual corrections. The agency believes that, in this instance,
(implementing the system was more practical than completing test-
~ ing. However, we believe that this example shows the potential

consequences of curtailed testing, and that proper test planning
and scheduling can decrease demands to compromise testing.

Staff shortages reduce testing

Another factor that affects software testing is the availabil-
ity of-staff. At some agencies we visited and in response to our
questionnaire, agency systems development managers cited staff
shortages as a testing constraint. For example, a systems develop-
ment manager at one agency believed that about 50 percent of soft-
ware development staff time should be devoted to testing, but due
to staff shortages he budgets only 25 percent. Also, 41 percent of
those responding to our survey felt that staff resources available
for software testing were less than adequate. The table below
summarizes those responses.

11

Response
Installations

Number. Percent

More than adequate
Adequate
Less than adequate
Don’t know

272
590
619 41

44 3

Total (note a)

a/ Totals do not add due to rounding and weighting of data.

Use of automated tools and other techniques
can increase testing productivity
and effectiveness

Two agencies we reviewed used software tools3 in the testing
process, but our survey indicated that most installations do not.
Moreover, most of these installations indicated a need for add-
itional training both in the use of software tools and in testing
techniques. Use of tools and techniques can increase efficiency
and effectiveness, and therefore compensate to some extent for time
and resource constraints.

Tools useful for software testing include test data generators
and test coverage analyzers. A test data generator analyzes a pro-
gram or expected program input and generates test data. A test
coverage analyzer monitors a program while a set of a test data is
being executed, and measures the percentage of program logic the
test executes. A more detailed list and description of software
testing tools can be found in NBS Special Publication 500-93,
“Software Validation, Verification, and Testing Technique and Tool
Reference Guide,” September 1982. Another source of information on
software tools is the Federal Software Testing Center of GSA’s
Office of Software Development. The Center makes these tools
available to Federal and State government agencies through its
April 1982 Software Tool Catalog, Report No. FCTC-82/013.

In our report on federal agencies’ use of software technology,
we noted that tools for software testing can reduce the labor of
preparing test data and of verifying that test data has caused
the logic of the programs to be used.4 This increases productiv-
ity, makes more thorough testing feasible, and results in

3 A software tool is a specially designed computer program that can
automate some of the labor involved in the management, design,
coding, testing, inspection, or maintenance of other programs.

4 “Wider Use of Better Computer Software Technology Can Improve
Management Control and Reduce Costs” (FGMSD-80-38, Apr. 29, 1980).

12

._’

more reliable software. However, we also noted in this report that
software tools, including those for testing, were not used
consistently throughout the federal government.

At least one agency we reviewed required that software tools
be used in the testing process. The agency requires that its new
programs be run against a test coverage analyzer called the COBOL
(Common Business Oriented Language) Instrumentation Package. How-
ever, our review at other agencies and our survey results indicated
that most installations do not use software tools for testing.
Only 13 percent of the survey installations said they used software
tizst tools.

One reason for this limited use appears to be a lack of
training. Our survey showed that only 24 percent of the install-
ations had offered training in the use of tools for software
t&sting. The greatest need for such training is in larger install-
ations: 62 percent of installations with more than 50 employees
indicated a great need for additional training. The table below
summarizes and projects the responses of all the installations.

Number of Staff (note a) -.---
Fewer

' Need
than 10 10 to 31 31 to 50 Over 50
No. % NO. % No. % No. % - - - - - - -

t G S me eat derate 235 243 221 23 21 23 111 88 29 34 43 11 37 22 7 50 30 9 96 29 7 62 19 5
ittle to
1 no need 302 29 22 9 7 9 15 10

N(o answer 38 4 8 3 1 1 8 5 -- -- - - - -

Total b/l ,038 100 258 100 74 tpoo 155 b/100
. ..- -- - - - -

A/ Based on a projected total of 1,526 installations with at
least one business application program.

9
tJ Total does not add due to rounding and weighting of data.

Installations also indicated a need for training in software

1
esting techniques (walkthroughs, inspections, and so forth).
raining in these and other techniques can improve testing

!
roductivity and effectiveness. About 65 percent of the
nstallations reported a need for additional training in testing

techniques. Again, this was particularly true for the larger
installations.

In addition to developing software tools, the Federal Software
Testing Center provides support to agencies by installing such

13

tools and teaching the technology necessary to use them
effectively. The Center

--researches the availability of software tools, technology,
and services that are available from the private sector and
identifies these sources for agencies in need of them,

--develops techniques and procedures regarding the validation
of software and quality control measures, and

--endorses newly developed techniques for testing and vali-
dating software.

Another part of GSA's Office of Software Development--the Software
Testing Branch --also helps agencies in the use of software tools by
developing testing guidance to be followed when using these tools
for quality assurance.

SOFTWARE TESTING HELPS ENSURE
ADEQUATE INTERNAL CONTROL SYSTEMS

Federal legislation requires that agencies establish and
maintain adequate systems of internal control. Software testing
.helps ensure the adequacy of internal control systems by determin-
ing whether software controls are adequate and working properly.
Thus, software testing helps federal managers comply with statutory
and policy requirements for effective internal control systems.

The Budget and Accounting Procedures Act of 1950 requires the
head of each federal department and agency to (1) establish ade-
quate accounting and administrative controls to safeguard assets,
(2) assure reliable financial information, and (3) assure adherence
to applicable laws, regulations, and policies. The Federal Manag-
ers' Financial Integrity Act of 1982 (Public Law 97-255), also
requires that internal accounting and administrative controls be
established. The act further requires heads of federal agencies to
prepare annual statements on whether such controls provide reason-
able assurances that assets are safeguarded and accounted for
accurately and reliably.

By verifying that software does only what it is supposed to
do, testing shows that internal controls contained in the software
perform as intended. Errors detected in testing may also indicate
a need for additional controls. In addition, executive branch
policies on computer security specifically require software testing
before computer systems containing sensitive information are put
into operation. 5 This testing is designed to ensure adequate safe-
guards and controls in computer systems that have a high potential
for loss of assets or sensitive information.

5 OMB Circular A-71, Transmittal Memorandum No. 1, July 27, 1978.

14

,

CHAPTER 3

POOR TESTING RESULTS IN

COSTLY AND UNRELIABLE SOFTWARE

Better management practices as discussed in chapter 2 could
have helped prevent poor testing. Because of poor testing, some
agencies did not detect the presence of material errors before
software was put into operation. For example, just one error in an
operational system required an agency to review thousands of pay
accounts and make corrected payments manually. Correcting the pro-
gram error itself cost $10,000. Had the error been caught during
development, before the program was placed in operation, the cor-
rection would have cost less. One error in another software pro-
gram caused an agency to exceed contract progress payments by more
than $500,000.

Poor testing had also failed to disclose that software would
not do what the user wanted it to do, and as a result the software
had to be modified or redone to perform correctly. Such errors re-
duce the extent to which agencies can rely on their systems to
safeguard assets and provide accurate information.

COSTLY ERRORS AND REDUCED SOFTWARE
RELIABILITY RESULT FROM POOR TESTING

We found examples of errors in all but one of the 12 business
application software systems we examined. In each case the agency
could have detected the error through testing before putting the
software into operation. These errors, many of which are discussed
as case studies in appendix II, required additional funds to cor-
rect and disrupted agencies' operations by forcing them to use
manual or less efficient methods of processing to accomplish their
tasks and correct the errors' effects. On the other hand, we found
that the beneficial results of good testing practices were evident
in a thoroughly tested system we examined which had few errors and
was not costly to maintain.

While software testing cannot be expected to uncover all
errors, it should be thorough enough to reasonably assure users
that the software will operate accurately and reliably. Detecting
all errors would require testing for every possible input
condition-- an alternative that is neither practical nor feasible.
Instead, good testing detects as many errors as possible using
representative input data or conditions for which the intended
results are known.

It is not easy to develop representative data and conditions
that will reasonably ensure software correctness. Those respon-
sible for testing , preferably working with the help of the user,
must devise test transactions that include invalid and unexpected
conditions as well as valid and expected conditions. In addition,

15

‘other factors --such as the uniqueness of the application, the
potential cost of an error or malfunction, or the cost of computer
and staff resources used in testing --may influence the degree of
testing needed.

In the examples discussed below, agencies did not use adequate
test transactions and conditions to test the software, and so did
not detect material errors. Generally, adequate test cases and
conditions were not used for one or more of the following reasons:

--Testing needs for the particular software were poorly
analyzed.

--Constraints were placed on time and/or resources.

--The user was not involved in developing the test data
and conditions.

Contract administration system
overpays progress payments

Even though the agency in case study 1 had tested the
~software, it had not used test transactions and conditions for
ipayments generated from manual data input. (See p. 29.) Also,
~apparently because of time pressures, some problems identified
!during testing were not corrected before the system became opera-
itional. As a result, the agency's automated contract administra-
tion system made erroneous contract progress payments totaling more
than $500,000. The. cost to correct these errors included $3,000

,worth of programming time, loss of interest on the money overpaid,
,and additional undetermined costs by regional offices to manually
'identify the erroneous payments.

At the time of our review, only two of the agency's nine
regions had identified erroneous payments caused by the software
problems. One identified 11 incidents where contract progress pay-
ment limits were exceeded by $500,000 and 2 incidents where such
payments were $18,000 too low. Overpayments usually cost the
federal government interest on the funds for the period of
overpayment.

The second region identified three overpayments. One of
'these, made in February 1982, overpaid a contract's total price by
~$43,965. Notified of the overpayment by the agency, the contractor
reimbursed this amount in July 1982.

iPayroll system makes incorrect
ihousing allowance payments

In case study 2, the agency tested a modification to its
payroll subsystem, a variable housing allowance (VHA) system, but
did not test for certain pay conditions of the VHA computation for
all pay grades. (See p. 31.) Once in operation, a programming
error in the system caused a wrong percentage multiplier to be used

16

for the untested pay grades. The agency estimated that about 750
pay accounts were incorrect. While the costs of correcting this
error could not be determined, the effects on payroll processing
were disruptive. The payroll processing program aborted before
completion and required emergency repairs. Also, the 750 accounts
had to be reviewed manually and corrected in a later pay period.

In our review of this case, we noted at least two testing-
related problems that contributed to the undetected error. First,
and most obvious, the testing criteria for the VHA system did not
specify that all pay grades be tested for certain pay conditions,
so neither the testing group nor the user developed specific test
data for these conditions. Secondly, even though planned tests had
not been completed, agency officials directed that the programming
changes be made operational. The agency accepted the higher risk
of error caused by inadequate testing to avoid delays and nonpay-
ment or to avoid manual payment of the allowance to some 800,000
recipients.

Payroll system computed employees' c individual pay in excess of $1 million

In case study 3, the agency designed its payroll system to
assume that data already in the data base were complete. (See p.
33.) When this assumption was violated, such as when data were
missing in an employee's record, the system computed an erroneous
payroll amount for that employee. However, the agency did not test
the data base for missing data in employees' records.

The first discovery of such errors was made in early 1979,
when the system computed the gross biweekly pay for two employees
at more than $2 million each. In response to these errors the
agency added a control that would identify excessive payroll calcu-
lations for review, but still did not test the data base for miss-
ing data. In October 1981, this type of error occurred again when
the system computed an employee's gross biweekly pay amount at
$1,097,664. The system's new control identified the erroneous pay
computation and the agency experienced only minor payroll process-
ing delays. Despite the latest error, the agency did not test for
missing data throughout the data base and the potential for future
errors still existed. ‘

In March 1982, systems development and payroll/personnel
officials, recognizing the potential for errors that the system's
controls might not detect, began developing a data base analyzer
program. This program, now run biweekly, tests the data base to
identify instances of missing data, and thus prevents the errors
they could cause.

Omitted and incomplete testing
causes payroll errors .

In case study 4, the agency failed to test a payroll system
modification. (See p. 36.) Originally, programming costs for the

17

modification amounted to only $57, but because of an undetected
error the agency had to correct the program code and the affected
master pay files at a cost of more than $10,000. Agency officials
estimated that the error had the potential to miscalculate 130,000
pay accounts and to improperly pay 10 percent of these. Agency
field offices actually had to review about 5,000 pay accounts and
make manual corrections.

Unit and system tests were not performed for this modification
because the programmer and the system test office considered the
change minor and because of a rush to process the December 1980
payroll. An independent test group responsible for verifying that
the modification was correct did perform limited testing, but did
not develop adequate test data and conditions. As a result, test-
ing did not detect the programming error--a missing period (.) at
the end of a line of code.

Proper testing yields trouble-free system

Besides the examples of poor software testing discussed above,
we also noted an example where thorough software testing contri-
buted to a relatively trouble-free system. Begun in 1979, this
project was to redesign a subsystem of the agency's payroll
system. Representatives of the agency's systems development staff
and the user conducted a detailed walkthrough to review and modify
the initial functional systems requirements developed by a contrac-
tor. In March 1980, this staff issued an implementation plan which
included (1) developing test data for unit and systems tests, (2)
preparing test plans, and (3) executing and evaluating tests.
According to a project team leader, the implementation plan was ex-
ecuted essentially as written. In December 1980, the user accepted
the subsystem after extensive systems, parallel, and user accep-
tance testing.

We examined the subsystem, which consists of about 30,000
lines of COBOL code in 15 program modules. Since implementation,
it has operated without problems, and in fiscal 1981, it required
less than 200 staff hours of maintenance work--a very small
amount. Officials at the facility attribute the subsystem's
quality to management's willingness to commit adequate resources to
software testing before placing the subsystem into operation.

Poor testing results in
unreliable software

Although the errors in the case studies we have discussed are
now identified for correction, these systems may still contain
other errors undetected because of poor testing. And those
potential additional errors may affect the extent to which agencies
can rely on them. Forinstance, the automated contract adminis-
tration system may contain additional undetected errors because the
agency did not adequately test conditions for progress payments

18

made using manual data input. Also, additional undetected errors
involving certain pay conditions for the pay grades that were not
tested could also exist in the variable housing allowance system.

In another example, poor software management and testing
practices raised questions about the reliability of computer soft-
ware even though we were not aware of any significant errors
detected in this software so far. (See p. 38) The agency we vis-
ited has developed a computer model to make actuarial valuations of
the civil service retirement plan. As we discussed in an October
1982 report, the reliability of these programs is questionable,
however, because the programs were not independently tested and
modifications were not controlled.1

The model consists of a series of computer programs, which are
an integral part of the valuation process. The agency uses data
produced by these programs in the retirement fund financial state-
ments and in determining the level of federal funding required for
the fund. For example, the programs calculated the actuarial pre-
sent value of future retirement benefits as $814.3 billion at
September 30, 1980, and required funding at $10.9 billion for
fiscal year 1980. These programs also help in estimating the
retirement portion of a fringe benefit factor federal agencies use
in considering the relative cost of acquiring products and services
from commercial sources versus providing them in-house.

The agency did not establish an adequate system of internal
control over the development and modification of the valuation pro-
grams. Specific control deficiencies we noted in our report were
as follows:

--Computer program documentation was not properly developed
and maintained.

--Programs were not independently tested.

--Program modifications were not adequately controlled.

The agency’s actuaries both wrote and tested the programs and made
subsequent modifications themselves. The programs were not tested
independently before becoming operational. Such independent test-
ing helps ensure objectivity and the development of adequate test
cases and conditions. Programmers should avoid final testing of
their own work because:

--Someone other than the development programmer can be more
objective.

--A programmer’s misunderstanding of requirements or
specifications may be perpetuated in the testing process.

1 “Inadequate Internal Controls Affect Quality and Reliability of
the Civil Service Retirement System’s Annual Report,‘l
(AFMD-83-3, Oct. 22, 1982).

19

--The programming organization's cost and schedule :
objectives may be given precedence over adequate testing.

In addition to not independently testing, the actuarial staff
did not retain test data or test results, so it had no docbmen-
tation. After our review the agency hired another actuary'who
reviewed the valuation programs, and both actuaries will par-
ticipate in future modifications to the programs and will check
each other's work. This procedure does not, however, constitute
independent testing for future modifications to the valuation
programs.

BETTER TESTING AGAINST USER REQUIREMENTS
IS NEEDED TO ENSURE THAT SOFTWARE
MEETS USER NEEDS

A critical objective of software testing is verifying that the
software satisfies the user's needs. But our review showed that
agencies did not always use software testing effectively to verify
that the software did what the user wanted. Limited user involve-
ment in the testing process and inadequate test criteria were the
testing deficiencies we noted. These deficiencies caused agencies
to modify or redesign the software at additional cost to satisfy
user needs.

Poorly translated user requirements can lead to the
development of software that does not do what the user wants. For
this reason, verifying that software development products (for
example, requirements, specifications, and program code) meet user
needs should be done throughout software development, and software
testing is an important technique in this verification process.
Some types of testing that can specifically address whether the
software development products meet user needs include inspections,
walkthroughs, and acceptance tests.

User involvement is essential throughout system development
processing, including software testing. Users share the responsi-
bility of making sure the software meets their needs and require-
ments. In addition to helping define initial functional require-
ments, users should help develop appropriate test data and
conditions, participate in reviews of software products, and
participate in acceptance testing.

In case study 6, we found that the final software product did
not satisfy user needs and software testing had not disclosed the
problem. (See p. 40.) One agency tested and implemented a new,
contractor-designed system for retrieving photographs. However,
the agency's acceptance testing failed to disclose that response
times for on-line inquiries would become unacceptably long as the
data base became fully loaded. Instead of a desired average
response time of about 15 seconds per inquiry, actual response time
was from 40 minutes to an hour with only 125,000 of the full load

20

of about 150,000 records loaded in the data base. AS a result, the
agency (1) resorted to batch processing to minimize costs and de-
lays caused by the lengthy response times and (2) is now spending
more than $19,000 to shorten response times by redesigning the data
base and rewriting program modules.

Original .,ystem specifications did not define an acceptable
inquiry response time, nor was this a specific acceptance testing
requirement. Acceptance testing was done with only 50 records in
the data base and failed to consider the impact on response time of
a data base. We believe response time is a critical factor in
designing an interactive system. Therefore, testing should have
been more thorough and should have included the effect on response
time of adding more records to the data base.

We noted instances at several agencies of little or no user
involvement in the testing process. Our survey of data processing
installations also indicated limited user participation in test-
ing. (See p. 48.) For instance, data processing installations
responding to the survey indicated that the user provided data for
acceptance testing of software developed in-house only 43 percent
of the time, and reviewed and validated test results 67 percent of
the time. Moreover, these installations indicated that of their
total business application programs developed in-house, only about
14 percent had been tested by the user staff.

TESTING REDUCES THE COST OF ERROR CORRECTION

The examples discussed earlier in this chapter show that
errors in operational software can be expensive. Adequate testing
detects errors in the developmental phase, thus reducing error cor-
rection after the software becomes operational. Generally, the
costs associated with the errors in operational software that we
noted included:

--Additional computer resources and ADP staff time to
reprocess data and to correct program code and affected data
files.

--User expenses to manually process or review data and
correct the computer's errors.

--Losses of financial assets.

Obviously, some costs-- such as user expenses and asset losses--can
be avoided if the error is corrected before software becomes
operational. But certain ADP costs can also be less if errors are
corrected before the software is put into operation.

In our examples of software errors, agencies used both data
processing staff time and computer time to correct program code or
affected data files, to rerun programs or systems, and to test the
corrected software. The amounts of these correction costs varied

21

with the error. For example, one agency used ADP resources valued
at about $270 to correct an error in its payroll system (see p.
34 1 I while another agency needed approximately $10,000 in staff and
computer time to correct an error in its automated contract
administration system (see p. 37).

It is generally accepted that the earlier an error is detected
and fixed, the fewer resources it takes to do so. One reason for
this is that as software develops from a concept to an operational
program, more stages of that development--such as requirements,
design specifications, or program code--may be affected by an
error. This is particularly true for design errors that involve
changes to software specifications. One industry study noted that
such errors are more than 7 times more expensive to correct after
software becomes operational than if detected during unit testing,
and 30 times more expensive than if detected during design.

We agree that correcting errors during software development
generally requires less data processing cost than correcting them
in operational software. Therefore, more thorough testing could
substantially reduce the cost to correct errors. For example, in
1981 one agency used $1.6 million, or 14 percent of an estimated
$11.2 million in direct ADP personnel costs, to solve system
problems. Considering estimates of the relative cost of error
correction during the software life cycle, substantial savings
government-wide from additional errors corrected during development
could be dramatic.

CHAPTER 4

CONCLUSIONS AND RECOMMENDATIONS

CONCLUSIONS

Federal agencies spend billions of dollars each year to
develop and maintain computer programs used for business
applications --computer software that processes transactions affect-
ing agency financial and information resources and that provides
information for management decisionmaking. However, our review
indicated that federal agencies generally are not managing the
software testing process effectively to help ensure that software
performs its intended functions accurately and reliably. We
believe that undetected software errors are costing agencies mil-
lions of dollars unnecessarily because such errors (1) cost more to
correct after software becomes operational, (2) often require
expensive manual processing or other corrective action, and (3)
sometimes result in loss of financial assets.

Software testing is often the last opportunity for managers to
check the accuracy and reliability of software before it becomes
operational. But, given the cost of errors and their potential
impact on the ability of the agency to perform its mission, Federal
managers do not emphasize testing strongly enough in the software
development and modification processes. While most agencies estab-
lish some software testing policies and requirements, they are
generally not enforced nor are they communicated through formal
written guidance to those responsible for testing. Too often
decisions on the amount and extent of testing depend on the discre-
tion of individuals or on time and staff limitations, not on test-
ing policies and requirements for the agency. The examples noted
in our review show software that received less than prescribed
testing, or no testing at all. Systems development managers waived
or did not enforce testing requirements, and costly, disruptive
errors occurred.

The users of business application software also have a
responsibility to help ensure that software performs as intended.
However, users do not always participate in the testing process,
and user roles and responsibilities in testing are not always
clearly defined. This situation contributes to the development of
software that does not meet user needs.

Most aqencies do not use software problem data to evaluate the
overall effectiveness of the testing process in producing quality
software. The agencies we reviewed generally did not use data on
the type, frequency, or cost of software errors to obtain feedback
and improve testina activities. In fact, most Federal ADP install-
ations responding to our survey did not routinely maintain this
type of information.

23

Federal agencies also have not taken advantage of software
technology that could improve the testing process. Staff at most
ADP installations do not have training in software testing tools
,2nd techniques. Such training could improve testing thoroughness
and efficiency. GSA’s Office of Software Development provides
assistance to agencies in acquiring and using software tools and
techniques throughout the software life cycle. We believe that
office can actively increase Federal agencies’ use of modern test-
ing tools and techniques.

RECOMMENDATIONS

’ We recommend that heads of Federal agencies:

--Establish written software testing policies and require-
ments defining the testing procedures, criteria, and tech-
niques required before either agency- or contractor-
developed software is placed into operation. These should
include specific requirements for user participation in the
testing process.

--Monitor and enforce compliance with testing policies and
requirements.

--Periodically evaluate the software testing process to deter-
mine

(1) its effectiveness in preventing errors and reducing
costs associated with error correction and

(2) appropriate allocation of staff and computer resources
to software testing.

--Identify and incorporate into the testing process those
automated tools and testing techniques that can help the
agency provide more thorough testing and more efficient
resource use. This should include providing appropriate
training on these tools and techniques.

We recommend that the Administrator of General Services,
through the Office of Software Development, review selected soft-
aware development projects in Federal agencies to identify uses and
ipotential uses of software tools and techniques that improve test-
:ing thoroughness and efficiency. This office should then report on
:these reviews to provide guidance to agencies for implementing
itools and techniques in their testing processes.

iAGENCY COMMENTS AND OUR EVALUATION

GSA agreed with our recommendations on the need to improve
software testing thoroughness and efficiency in the federal govern-
ment. The agency has acted to improve software by assisting
agencies in accepting and using state-of-the-art software

24

technology. We endorse GSA’s efforts in assisting agencies as an
initial step. However, much remains to be done to improve testing
in view of the billions of dollars spent annually on software.

25

APPENDIX I APPENDIX I

AGENCIES AND INSTALLATIONS VISITED AND SURVEYED

AGENCY/INSTALLATION VISITED SURVEYED.

1. U.S. Army Finance Center, .
Ft. Benjamin Harrison, Indiana

2 U.S. Air Force Logistics Command
Wright-Patterson Air Force Base,

Ohio.

3. Defense Systems Automation
Center

Columbus, Ohio.

4. Department of Housing and Urban ' 'X
Development

Washington, D.C.

5. Department of the Interior
Bureau of Reclamation

Sacramento, California

6. U.S. Naval Regional Data
Automation Center, Naval
Air Station

Alameda, California

7. Office of Personnel Management
Washington, D.C.

8. U.S. Postal Service,
Postal Data Center
San Francisco, California

9. ACTION

X

X

X

X

X

X

X

10. Department of Agriculture

11. Department of the Treasury
Alcohol, Tobacco, and

Firearms

12. U.S. Army a/

13. U.S. Air Force a/

14. Bureau of Indian Affairs

26

APPENDIX I APPENDIX I

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

VISITED SURVEYED -I__
X

AGENCY/INSTALLATION

Bureau of Mines

U.S. Customs Service

U.S. Coast Guard

Defense Contract Administration
Services Region

Defense Contract Audit Agency

Defense Logistics Agency

Defense Communications
Agency

Defense Nuclear Agency

Department of Energy

Export-Import Bank

Federal Aviation Administration

Federal Highway Administration

Federal Law Enforcement Training Ceter

Federal Communication Conuh3siOn

U.S. Fish and Wildlife Service

U.S. Geological Survey

General Services Administration

Internal Revenue Service

Department of the Interior d

Department of Justice

National Aeronautics and Space
Administration

U.S. Navy a/

. x

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

,

27

37.

38.

39.

40.

41.

42.

43.

44.

45.

AGENCY/INSTALLATION VISITED SURVEYED

National Institutes of Health

National Oceanographic and
Atmospheric Administration

APPENDIX I APPENDIX I

X

X

Nuclear Science Foundation

National Science Foundation

Office of the Special Trade
Representative

Department of State

Tennessee Valley Authority

Department of the Treasury

Veterans Administration

*8

X

X

X

X

37 TOTAL

A/Excludes agency/installation visited.

.

28

I* . . ‘,
L .i,“.

I
.‘,

APPENDIX II

CASE STUDIES

APPENDIX II

CASE STUDY 1 - Poor testing led to erroneous contractor
progress payments and contract overpayment

Problem statement

In this case, inadequate testing procedures during the
development and testing of an automated contract administration
system caused the system programs to make 11 overpayments of
contractor progress payments totaling more than $500,000.

Discussion of problem

In May 1981, the agency’s validation and automatic progress
payment subsystem calculated overpayments totaling more than
$500,000 and two underpayments totaling more than $18,000 in one
regional office.

For the same period, another regional office reported at least
two known overpayments for an undisclosed amount. In response to
our inquiry, the second regional off ice disclosed another over-
payment totaling $43,965 made in February 1982. In each instance,
the problem identified was erroneous code in the three programs
that were used to calculate limitations for progress payments.

In June 1979, the agency modified its validation and automatic
progress payment subsystem, enabling the programs to calculate a
limitation for progress payments and record manual invoice pay-
ments. The modification was tested in July 1979 to determine
whether the system specifications were in compliance with the
functional requirements. The test identified 37 types of problems,
all related to the progress payment calculation. In August 1979,
tests were rerun and it was reported that the outstanding problems
were corrected. However, in June and July 1981 the payment limita-
tion programs caused the operating system in two regional offices
to fail. We identified the problems as (1) erroneous program code,
(2) inadequate test data, (3) inadequate test conditions, and (4)
imprecise specifications for manual progress payments. The agency
apparently corrected the programs, but as late as February 1982
another overpayment totaling $43,965 was reported.

Apparently, the agency did not adequately test possible
conditions for progress payments made by inputting data manually.
Instead, it addressed the problems as though they were maintenance
activities rather than testing and design activities. For example,
an important aspect of the testing process is the use and retention

29

‘< ,“.
: .,’ “‘.I ,,

,’

APPENDIX II APPENDIX II

of test results and analysis. However, agency officials could not
provide us with results of the tests conducted in July and August
of 1979. Moreover, one official told us that the problem resolu-
tion apparently "fell through the cracks" amid the hustle of
getting the system tested on time. In addition, both a lead
programmer and a system manager acknowledged that programmers
tested as little as possible and were not knowledgeable about test
procedures and available aids.

Impact of errors

The agency spent less than $3,000 to identify and correct
programming errors in the automatic progress payment subsystem.
However, the actual dollar impact of these errors is not known.
&ome instances may still exist in which progress payments were
overpaid or underpaid, the net effect of which could have cost the
Government lost interest and unrecovered overpayments. The recur-
.rence of this type of error in February 1982 increases the doubt
that the system accurately and reliably calculates contractor
iprogress payments.

Two of the agency's nine regional offices attempted to
(identify possible erroneous progress payments caused by programming
errors. One region identified 11 overpa.yments and 2 underpay-
,ments, amounting to net overpayments of more than $500,000. The
lother region identified at least three overpayments with the latest
ione--for $43,965--occurring in February 1982.
iactually overpaid a contract,

That overpayment
and the agency has sought to recover

the $43,965 from the contractor. Other cases like this could
exist.

The recurrence of the overpayment problem in February 1982
also indicates that the system still does not accurately calculate
contractor progress payments. For this reason, the automatic pro-
gress payment subsystem's reliability is questionable. Agency
officials cannot be reasonably sure that the subsystem adequately
safeguards financial assets or that it contributes to their
efficient use.

30

,

APPENDIX II APPENDIX II

CASE STUDY 2 - The testing process that entered program changes
without being val idated

Problem statement

In this case, testing for a new variable housing allowance
(VHA) system did not include testing criteria for employees within
special pay categories. The lack of criteria caused the wrong per-
centage to be used in computing the new variable housing allowance
for officers in pay grades 04 (major) through 06 (colonel) with 4
years enlisted or warrant officer service. As a result, for 750
pay accounts, the agency had to correct the program error for the
new housing allowance, test and analyze the results, and recompute
(adjust) each account.

Problem discussion

As early as March 1981, the agency began work on modifying its
payroll system to include new programs for the VHA subsystem. Be-
tween March 1981 and August 1981, extensive effort was devoted to
programming and testing the system changes. Although July 25,
1981, was scheduled as a first system test date for the VHA program
changes, the tests could not be conducted then because the program-
ming effort was not completed.

In spite of this, the agency’s independent quality testing and
validation group tested the VHA program changes on August 22,
1981. Officials said they could not complete their review of the
testing outputs because they did not have a 2-month pay history
experience factor, as required for testing payroll changes.
Higher officials directed the testing group to put the program
changes into payroll production, regardless of the lack of
val idation.

During the first production payroll run in October 1981 the
the payroll system, containing 800,000 master records, aborted the
program before the system could complete the entire payroll. Four
major system failures were identified, two of which involved the
VHA subsystem. Certain emergency tasks had to be performed to get
the system operating again, leaving the problems to be analyzed and
corrected 1 ater . Consequent1 y , 750 pay accounts were erroneously
processed and provision had to be made in another pay period for
retroactive correction.

Initial problem solving of the VHA failures revealed an
improper posting of the VHA pay entitlements for certain officer
grades with prior enlisted service. Researchers concluded that
the VHA problem was caused by incorrect coding, resulting in the
use of the wrong percentage multiplier for the computation of
allowances for officers in pay grades 04, 05, and 06.

31

APPENDIX II APPENDIX II

In spite of the agency’s monitoring of programming staff work
output, no test conditions were created specifically for these pay
grades. Also, the quality testing .and validation group did not
receive the test data and specifications it needed to test and
validate for conditions before releasing the system into
product ion.

We be1 ieve that poor software test planning and lack of user
involvement in specifying test conditions contributed to the imple-
mentation of programs which produced erroneous pay entitlements.

We found no specifications for test data or documentation for
testing special pay categories, and the systems analyst group
treated these special pay categories like other employees in the
same pay grades.

Imbact of errors

Although agency officials did not know the exact number of
officers who received incorrect payments, they estimated 750 pay
accounts could have been affected. The errors created an un-
necessary workload for ADP and accounting staff because (1) coding
program changes and retesting program changes had to be made and
(2) field offices had to identify payee& and compute payments
manually.

32

APPENDIX II APPENDIX II

CASE STUDY 3 - Inadequate testing for complete and accurate data
causes incorrect payroll amounts

Problem statement

In this case, an agency did not provide adequate testing,
considering the design of its payroll system, to ensure complete
and accurate data in the employee master payroll file. As a
result, the integrated payroll system calculated excessive payroll
amounts when expected data in the data base were missing. Since
becoming operational in 1979, the system has continued to compute
biweekly gross pay for some individuals in excess of $1 million.
Although internal controls single out such large amounts for
review, system development and payroll officials agree that other
instances of missing data could cause erroneous payroll computa-
tions which the internal controls would not detect. In March 1982,
the agency’s systems development staff began developing a data base
analyzer program which edits the data base for missing data. This
analyzer program is now run for each biweekly payroll.

Problem discussion

The agency’s integrated personnel and payroll system computed
an employee’s biweekly gross pay amount as $1,097,664 for the pay-
roll period ending October 17, 1981. The system’s internal con-
trols detected the error, which was caused by the computer reading
blank spaces, but it threw payroll processing totals exactly $1
million out of balance. The agency had to partially rerun the
payroll process before preparing the check issuance tape, which is
sent to the Department of the Treasury.

Another system control also identified the excessive pay com-
putation. The system produces a list of all employees whose
biweekly gross pay exceeds the maximum biweekly salary payable from
the Federal Government’s General Schedule. The maximum in effect
at the time of this error was $2,211.20. The review list showed
the employee with a biweekly gross pay of $97,664.00 and a net pay
of $10,968.72 because the system limits the field size for gross
pay to hundreds of thousands (six positions to the left of the
decimal) . Therefore, the individual’s pay amount was not $1 mil-
l ion or more, but was large enough to be singled out for review.
Fields for totals in the system, however, were large enough to
contain the total gross pay computation. With the $1 million
figure included in the total payroll amount, but not in the
individual’s pay amount, the reconciliation showed the payroll
processing out of balance by that amount.

At the formal request of the agency’s payroll staff, systems
development staff identified the cause of the out-of-balance condi-
tion. To correct it, an edit was added to a payroll program to

33

APPENDIX II APPENDIX II

prevent th is data field from being used in the pay computation when
it contains spaces.

Despite similar past errors, a's discussed below, and a lack of
edits in payroll programs to indicate blank data fields, the agency
did not test the data base to see if there were other instances of
missing data. Instead, the agency relied on the internal control
that identifies payroll computations in excess of the maximum bi-
weekly gross pay.

The agency's office of inspector general reviewed the
reconciliations for the first five biweekly payrolls produced by
the personnel/payroll system (pay periods ending Jan. 27 through
:March 24, 1979). Its October 30, 1979, report identified two
instances in which blank data fields caused the system to calculate
biweekly gross pay of over $2 million for each of two employees.
#As corrective action, the agency agreed to modify the system so
that it would identify all employees whose pay computation exceeded
specific limits. This resulted in the biweekly gross pay review
list discussed earlier. We could not determine whether testing
prior to system operation contained test cases and conditions for
,missing data.

The inspector general report noted t.hat the agency designed
the system with most internal controls intended to prevent entry of
erroneous data. Therefore, the system assumes that all data in the
personnel/payroll file are complete and accurate. The lack of
edits to detect missing data in many data fields is a good example
of this assumption. However, the report also points out, and we
agree, that maintaining data files without some errors and omis-
sions is virtually impossible. We believe the latest excessive pay
computation best illustrates this.

iImpact of error

The measurable cost impact of the October 1981 pay computation
error was negligible, but the recurrence of this type of error
raises questions about the reliability of payroll processing. Cor-
rective action for such errors, including the addition of certain
internal control features, did not adequately address the overall
problem of potential missing data throughout the data base. There-

'fore, given the overall system design assumption of an accurate and
complete data base, agency officials could not be sure the system
accurately computed payroll amounts.

We measured the direct impact of the October 1981 error using
ADP-related costs to determine the error, modify the appropriate
payroll program, and rerun the payroll. These costs totaled less

'than $270. However, we believe that, although the ADP-related
costs associated with the error are not substantial, the real

34

APPENDIX II APPENDIX II

impact of the error is the doubt it raises about system accuracy
and rel iabil ity. System internal controls (the biweekly gross pay
review list) identified the latest error; an erroneous check was
not issued: and the payroll to agency employees was not late.
However, corrective action for this and earlier errors relating to
missing data did not adequately address the overall potential
problems throughout the data base. The pay review list identifies
only pay computations that exceed the maximum allowable pay, not
erroneous computations that fall below this limit. In addition,
the edit added for the most recent excessive pay computation
addressed only the data field that caused this specific error. The
system did not contain specific edits for all potential missing
data conditions. As a result of these factors, agency officials
could not be reasonably sure that the system produced accurate pay
computations.

In March 1982, the systems development staff began developing
a data base analyzer program which will test the data base for
missing data. This program, now run for each biweekly payroll,
will help provide the continuous testing the system needs to help
ensure accurate and reliable payroll processing.

35

” ,

APPENDIX II APPENDIX II

CASE STUDY 4 - Failure to test program modifications causes
mayor account problems

Problem statement

In this case, an agency did not test a modificatioal to its
payroll system. An undetected programming error caused pay miscal-
culations and had the potential to miscalculate up to 130,000 pay
accounts involving pay as many as 13,000 people.

The agency spent more than $10,000 to correct the program and
the pay account errors.

Problem discussion

The agency modified its pay system in late December 1980 so
that it would properly process pay when individuals reported leave
more than six months after they used it. The modification took
about five programmer hours and cost about $57. In making the cod-
ing change, the programmer failed to place a period at the end of a
code line. Because the change was considered minor and there was a
rush to complete the December 1980 payroll computation, neither the
program nor the system was tested. The program change was sent to
an independent test group for validation; however, the group did
not use the functional specifications documentation to establish
test transactions and conditions or use a current data base for
making the tests.

Between implementation in December 1980 and the accidental
discovery of adverse effects in March 1981, the program error
caused pay account miscalculations for individuals assigned over-
seas whose cost-of-living entitlement changed. When it identified
the coding error and the pay account miscalculations, the agency
took the following corrective actions:

--All finance offices were notified of the problems and
instructed to make local payments where necessary.

--Problem pay accounts were identified, the code error and mas-
ter pay files corrected, and all miscalculated accounts recom-
puted.

--A list of 5,000 payees was prepared and sent to 100 finance
offices for manual review and update.

--Corrections to the master pay file were manually reviewed.

--Pay account recomputations were tested for accuracy.

To prevent recurrence of the problem, the aqency also directed that
the standard quality validation program be followed.

36

APPENDIX II APPENDIX II

Software testing could have identified the programming
errors. Common testing techniques that can provide an objective
review, such as desk checks, structured walkthroughs, or peer
reviews, were not used. The agency’s system test off ice also
skipped system testing because it considered the change minor and
felt it had higher priority work.

The next step in the normal testing process, vali’dation by the
independent test group, was also inadequate. The group verified
only that the coding modification produced the desired change: it
did not test for possible follow-on effects in other segments of
the system. The tests the group did make used an out-of-date data
base which did not include October 1980 rate changes to cost-of-
living allowance tables. Later calculations using the correct
table values helped identify miscalculated pay accounts.

We also noted that the agency did not have formal test pro-
cedures, guidelines, or criteria. Instead, managers relied on
programmer discretion to develop, evaluate, and test computer pro-
grams. In this case the programmer chose not to test and did not
anticipate the follow-on error because she did not use system
specifications or documentation in making the coding change.

Impact of error

The agency used about 180 staff and 16 computer hours (costing
more than $10,000) to correct the pay program error and resolve
incorrect pay accounts or payments. In addition, about 100 local
finance offices were directed to review 5,000 pay accounts and make
necessary manual adjustments. The costs of this field action were
not available.

37

APPENDIX II APPENDIX II

CASE STUDY 5 - Lack of independent testing contributes to
questionable proqram accuracy and reliability

Problem statement

In this case, the agency's actuarial office uses computer
programs in making actuarial valuations of the civil service
retirement plan. However, the agency did not subject these pro-
grams and their modifications to independent testing procedures.
Because of this lack of appropriate testing and other internal
control deficiencies related to these programs, we found the relia-
bility of these programs questionable.

Problem discussion

In 1977, the agency developed a computer model to make actu-
arial valuations of the civil service retirement plan. The model
consists of a series of computer programs which are an integral
part of the valuation process. The agency uses data produced by
these programs in the retirement fund financial statements, and in
determining the level of funding required by the Congress. For
example, the actuarial present value of future retirement benefits
was calculated at $814.3 billion at September 30, 1980, and the
required funding at $10.9 billion for fiscal 1980. This program
also helps estimate the retirement portion of the standard fringe
benefit factor for retirement and disability. Federal agencies use
this factor in considering the cost of acquiring products and
services from commercial sources versus providing them in-house.

The agency's actuarial staff wrote the programs that support
the valuation process. This staff also tested the programs and now
controls their operation and modification. Since the agency's
systems development function did not participate in program devel-
opment, the programs were not subject to its testing icies. More-
over, the actuarial staff considers the valuation program just a
"super calculator" and maintains it in a computer development
library where they can operate and change it as desired. This
differs from other agency programs which are maintained in a com-
puter production library --where internal controls and other proce-
dures restrict access to programs and their modification.

In a review of the retirement fund financial statements for
fiscal 1980, we noted the following deficiencies in control of the
valuation process:

--Computer program documentation was not properly developed
and maintained.

--The programs were not independently tested.

--Program modifications were not adequately controlled.

38

APPENDIX II APPENDIX II

We found the entire valuation process needs better control to
provide the Office of Personnel Management with reasonable assur-
ance of accuracy.

By not following accepted software testing practices, the
agency’s actuarial staff did not reasonably ensure the adequacy of
testing and hence the reliability of the valuation process. A
basic principle of software testing is that the programmers and the
programming organization should avoid testing their own programs.
Self-testing can be ineffective because:

--Someone other than the development programmer can be more
objective.

--Programming errors due to programmer misunderstanding of
requirements or specifications may be perpetuated in the
testing process.

--The organization’s cost and schedule objectives may be given
precedence over the adequacy of testing.

However, in this case the agency’s actuarial staff both developed
and tested the programs for the valuation process. No independent
tests were made, and the actuarial staff did not document the test
criteria used or the results obtained.

In addition to doing the testing, the actuarial staff controls
the operation and modification of the valuation programs. This
further weakens the reliability of the valuation process. Al though
it has its own systems development staff and computer system
responsibilities, the actuarial staff runs the valuation programs
on equipment managed by another organizational unit, which also has
a systems development staff. Systems development officials agree
that control of the valuation process was overlooked--neither staff
had been given that responsibility. The officials also agreed that
had agencywide testing guidance existed, the actuarial office might
have been more aware of the need for independent testing.

Impact of error

The agency cannot reasonably assure users that the valuation
process produces accurate and reliable estimates for computing (1)
the present value of civil service retirement benefits and (2)
congressional funding amounts based on these estimates. Other uses
of the valuation process, such as calculating for the retirement
portion of the standard fringe benefit factor, may also be unreli-
able.

39

APPENDIX IT APPENDIX II

CASE STUDY 6 : The testing process that did not consider
user needs and requirements

Problem statement

In this case, testing for a new, interactive, time-dependent
system did not consider the actual performance demands once the
system became operational. Acceptance testing used too few test
records and did not detect that, as the data base was loaded, the
system response time would increase from an optimal maximum of 15
seconds to more than 40 minutes per single inquiry. To shorten
response time, the agency is now spending about $19,000 to redesign
the data base and will spend additional funds rewriting the program
modules.

Problem discussion

In March 1980, a contractor began designing an on-line, inter-
active system that would allow agency personnel to quickly locate
and retrieve agency photographs. In January 1981, the agency
implemented the completed photo retrieval system in one of its
regions and began loading a data base that would eventually hold
some 150,000 records. However, about 9 months after system imple-
mentation, the user began complaining of. lengthy response time for
system inquiries. By February 1982, agency officials estimated
that the data base contained about 125,000 records and response
time per inquiry took from 40 minutes to an hour. Although this
response time compares favorably to the several days a manual
search would require, optimal response time for an interactive
system would be only 15 seconds per inquiry. Therefore, to reduce
terminal tie-ups and other unnecessary costs associated with
lengthy response times, the region created a temporary procedure to
process retrievals in a "batch mode."

In December 1980, the system has been acceptance tested; and
based on this testing, the region's certification review board
certified the system for implementation. However, the region
arbitrarily selected only 50 test records for acceptance testing
and did not consider inquiry response time for a fully loaded data
base. In addition, since original.system specifications did not
include criteria for response time, acceptance testing did not
disclose the potential for unacceptable response time once the
system was operational.

We believe poor planning for software testing and acceptance
contributed to implementation of a system that did not meet user
needs. In fact, we found no formal test plan for the photo retrie-
val system.

40

APPENDIX II APPENDIX II

Impact of error

The photo retrieval system, as designed, does not provide the
interactive capability the user needs, and will not be implemented
agencywide unless response times are reduced. In its attempt to
reduce response times, the agency has developed a two-phased
approach. In the first phase the contractor will redesign the data
base and write a program to convert the information in the old data
base to the new one. Then the system will be tested to see if the
redesign has reduced response time. The cost of the first phase
will be about $19,000 and will take nearly 1,000 staff hours to
complete. If the first phase reduces response time, phase two will
begin. The contractor will modify about a third of the existing
program modules to further reduce response time. The cost of this
second phase has yet to be determined.

41

,,I. ‘. ’ . .>,,;;,.* (, :: ,* 1
“‘II ” .I*~,, : ,

APPENDIX III APPENDIX III

SUMMARY OF QUESTIONNAIRE RESULTS

This appendix summarizes the results of our survey of Federal
ADP installations. The purpose of the survey was to determine the
status of and procedures used for testing and maintenance in the
federal sector. The survey was accomplished through a question-
naire sent to approximately 600 ADP centers randomly selected from
a listing of 4,423 such installations on file with GSA. The ques-
tionnaire was to be completed by the ADP manager or other official
in charge of the ADP facility.

We received completed questionnaires from 477 of the 600 in-
stallations, for a response rate of 79.5 percent. Of these 477
installations, 207 had at least one business application program.

Detailed information on our sampling methodology, including
sampl ing errors, is contained in appendix IV.

CHARACTERISTICS OF ADP INSTALLATIONS
WITH BUSINESS APPLICATION PROGRAMS

The following paragraphs describe the number of installations
that use business application programs, the number of programs in
use, the sources for these programs, the primary use made of these
programs, and the number of ADP staff at each installation that had
at least one of these programs.

Number of installations
and business application programs

Based on our survey results, we statistically estimate that
1,526, or 34.5 percent, of the 4,423 ADP installations had business
application programs. The number of such programs at each instal-
lation varied considerably from 1 to 8,000. We estimate the 1,526
ADP installations had approximately 812,000 business application
programs at the time of our survey, or an average of about 500
programs per installation.

Source of business application programs

Business application programs could have been developed by the
ADP staff at the installation, by an outside contractor, or by some
other source such as a federal agency that loaned its program to
the installation. Our questionnaire asked for the source of these
programs, and the responses are shown in table 1.

42

APPENDIX III APPENDIX III

TABLE 1

Source

Installation's ADP staff
Contractor
Other

Total

Percentage of
programs (note a)

69
10
21 -

100 -

:/Based only on those responding to the question.
Two percent did not answer.

Primary use of business application programs

Our survey disclosed that more business application programs
were used for managing and monitoring the activities of the agency
(for example, issuing licenses or monitoring grants) than for any
other single function. As shown in table 2, the top three func-
tions were managing and monitoring, accounting, and inventory.

Primary use

TABLE 2
Installations

Number Percent

Management and monitoring 183,828 24
Accounting 150,388 20
Inventory 130,126 17
Personnel 91,113 12
Payroll 46,964 6
Staff accounting 22,951 3
Other 134,271 18 -

Total 759,641 100 - .

.

43

APPENDIX III APPENDIX III

Size of ADP staff at installations
with business application programs

Our survey showed that the size of,the ADP staff' at the
installations varied considerably from one or a few, to as many as
753. The average ADP staff was 29 employees. As shown in table 3,
for purposes of our analysis we divided the installations into four
categories based on the size of their ADP staff.

Category

TABLE 3
Installations

Number Percent

Fewer than 10 employees 1,039 68
10 to 30 employees 258 17
31 to 50 employees 74 5
Over 50 employees 155 10

Total a/ 1,525 100 -- -

a/Total does not add due to rounding and weighting of data.

MAINTENANCE AND TESTING OF
iBUSINESS APPLICATION PROGRAMS
I

To determine the status of the maintenance and testing per-
formed on business application programs, we asked for the following
information on their business application software: (1) the amount
of time devoted to maintenance and testing, (2) the types of
maintenance performed, (3) the percentage of programs receiving
acceptance testing, (4) the difference, if any, between contractor
and "in-house" ADP staff in performing tests, (5) the resources
available for testing, (6) the time users allotted for testing, (7)
the amount of test documentation kept, and (8) the amount of other
documentation kept, on business application software.

Time devoted to maintenance and testing

According to our survey, the amount of time spent on mainten-
ance was directly related to the number of programs an installation
had: the more programs, the more time devoted to maintenance. For
example, about 57 percent of those installations with Jess than 20
programs reported they spent 10 percent or less of their time main-
taining them. However, about 50 percent of those installations
with more than 550 programs reported spending from 21 to 50 percent
of their time maintaining them.

~ l"ADP staff" refers to the full-time equivalent number of computer
specialists, computer system analysts, and computer programmers
(any series 334 or the equivalent).

44

/

APPENDIX III APPENDIX III

The same relationship did not hold for testing programs. No
matter how many programs they had, most installations reported
spending less than 20 percent of their time testing programs.
Tables 4 and 5 show the results of our survey.

TABLE 4

Staff Time Devoted to Maintenance

Number of installations (note a)

Percentage of
time

Fewer than 20-150
20 programs programs
No. 5 No. 5

10 or less 148 57
11 to 20 15 6
21 to 50 96 37

111 27
74 18

177 44
44 11 - -

405 100 --

51 to 100 0 - - -

Total (note b) 258 100 --

151-550
programs
No. 5 -

81 27
15 5

133 44
74 25 -

302 100 -

Over 550
programs
No. 5

5"; 17 10

177 50
81 23 -

354 100 - -
YDoes not include installations that did not provide this

information.

b/Totals may not add due to rounding and weighting of data.

TABLE 5

Staff Time Devoted to Testing

Number of installations (note a)

Percentage Fewer than
of time 20 programs

No. 5

10 or less 155 64
11 to 20 7 3
21 to 50 74 30
51 to 100 7 3 - -

Total (note b) 243 100 -

20-150 151-550
programs programs

191 47
125 31
74 18
15 4 - -

405 100 --

177 57
66 21
52 17
15 5 - -

310 100 - -

Over 550
programs

a/Does not include installations that did not provide this
information.

b/Totals may not add due to rounding and weighting of data.

155 46
103 30
66 20

339 100 --

45

APPENDIX III APPENDIX III

Types of maintenance

Next we sought to determine what types of maintenance, if any,
were required at least once during.fiscal year 1981. About 95 per-
cent of the 1,526 installations required some form of maintenance
on a portion of their business application programs. No one type
of maintenance was performed substantially more times than any
other. Table 6 shows the overall percentage for each type of main-
tenance that the projected 812,171 programs required.

TABLE 6

Types of maintenance

Removing defects in program

Percentage
of programs

15

Keeping tables and codes current 14

Enhancing the program beyond the
original design objectives 21

Upgrading hardware or software 16

Changing the program because of '
legislation and/or regulations

Other

10

2

(Acceptance testing of programs implemented
~ in fiscal 1981

I Acceptance testing of programs involves comprehensively test-
(ing the total system software against the system specifications in

a operational environment.

We sought to determine how many of the 100,480 business appli-
cation programs implemented in fiscal year 1981 had been acceptance
tested. We estimate that about 80,000, or 79 percent of the pro-
grams, had been developed either by contractors or by the in-house
ADP staff--8 percent and 71 percent; respectively. Seventy-three
percent2 of the contractor-developed programs were reported to
have been acceptance tested before production. Eighty-six per-
cent 3 of the programs developed in-house were reported to have

: 2 Based on 8,152 valid cases. This means the number of
contractor-developed programs is greater than or equal to the
number of programs that were acceptance tested.

3 Based on 67,339 valid cases. This means the number of programs
developed in-house is greater than or equal to the number of
programs that were acceptance tested.

46

APPENDIX III APPENDIX III

been acceptance tested before implementation. This meant that an
average of 85 percent of all business application programs had been
acceptance tested, with contractors doing more than in-house ADP
staff.

Contractor-developed programs
vs. programs developed in-house

Next we asked who performed the acceptance testing. Ideally,
it should be done by someone other than the developer of the pro-
gram. However, as detailed in table 7, about half the contractor
programs and about three-quarters of the in-house ADP staff’s pro-
grams were developed and tested by the same person(s).

Developed by
contractor staff

Tested by staff of
contractor who
developed the
program

Tested by staff of
contractor other
than program
developer

Tested by in-house
ADP staff

Tested by user's
staff

Tested by other(s)

Total

TABLE 7

Acceptance Testing of Programs

Percentage Devel aped by
tested-

(note a)

52

8

28

~ g/ Based on 5,137 programs.

~ b/ Based on 40,447 programs.

in-house ADP staff

Tested by in-house
ADP staff respon-
sible for program
development

Tested by other in-
house ADP staff

Tested by contractor
staff

Tested by user's
staff

Tested by other(s)

0

14
3

Total 100

Percentage
tested

(note6)

Percentages rounded to 100.

74

10

47

APPENDIX III APPENDIX 111

Next, we asked if either the contractor or the in-house ADP
staff had performed certain steps in their acceptance-testing
process. Table 8 shows the results.

TABLE 8

Steps
Performed Performed

by contractor in-house

---------(percent)---------

Written diary of test
results kept

Test results reviewed
and validated by user

Test results formally
accepted in writing by
in-house ADP staff
and/or user

User-supplied data used
in testing

25 22

91 67

82 42

49 43

Resources available for testing
business application programs

Because we thought the testing of business application pro-
grams could be influenced by the resources at the installation, we
sought to determine the adequacy of computer time, ADP staff, and
funds. Table 9 gives the results of our survey.

TABLE 9

Accessibility Number Availability
of computer of of

time ADP staff funds
Response NO. - 5 No. - i No. 5

More than adequate 943 62 272 18 309 20 - Adequate 405 27 590 39 744 49
Less than adequate 147 10 619 41 383 25 .
No answer 29 2 44 - 3 88 - 6 -

Total (note a) 1,526 100 1,526 100 1,526 100 - - - -

c/May not add due to rounding and weighting of data.

These statistics imply that the computer is usually accessible
and does not hinder testing of business application programs. How-
ever, the number of ADP staff available often limits the amount of
testing performed. Only 25 percent of installations said funding
is a limiting factor.

48

APPENDIX III APPENDIX III

Time allotted by users for testing
business application programs

Next, we asked if the amount of time allotted by the users for
testing business application programs influences the testing proc-
ess. The responses are summarized in table 10.

TABLE 10

Time al lotted Installations
Number Percent

More than needed 44 3
About right 980 64
Less than needed 442 29
No answer 59 4

Total fi/ 1,526 100 Lllllllll
a/Total does not add due to rounding and weighting of data.

Test documentation

We asked whether installations had their programs routinely
documented according to FIPS PUB 38. This National Bureau of
Standards publication recommends that a test plan and a teat analy-
sis report be prepared. The test plan should identify test mile-
stones and provide the schedule and requirements. It should
include specifications, descriptions, and procedures for all tests,
as well as test data reduction and evaluation criteria. The test
analysis report should document the test results and findings.
That report should also include a. summary of the software’s capa-
bilities, deficiencies, and recommendations. As table 11 shows,
only a projected 185 installations, or about 11 percent, did such
documentation routinely in fiscal 1981.

TABLE 11

Amount of progress
with documentation

All or almost all programs
Most programs
About half the programs
Some programs
Few or no programs
No answer

Total

Installations
Number Percent

111 7
52 3
22 1

118 8
1,105 73

118 8

1,526 100 - -

49

,.I ’ I

APPENDIX III APPENDIX III

Data maintained on fiscal 1981
business application software

Our analysis showed that only a small percentage of the in-
stallations maintained any one type of data relative to failures
and costs in fiscal 1981. Table 12 shows how many installations
maintained five types of data in fiscal 1981.

Type of data

TABLE 12

Installation response
Maintained Not maintained No answer
No. B No. 3 No. 5

Software development 442 29 1,039 68 44 3
costs by system

Number of lines of
code of production
software in use 516 34 958 63 52 3

: Types of software
program failures 472 31 1,010 66 44 3

i Frequency of software
program failures 450 30 1,039 68 37 2

(Cost to repair
failures 170 11 l’, 297 85 59 4

GUIDELINES AND POLICIES

We sought to determine how many installations had standards to
help their in-house ADP staff test business application programs,
and what standards applied when the contractors tested such pro-
grams. We checked to see if written guidance had been received
from outside sources such as NBS, GSA, or the parent agency and,
if it had, how useful this guidance had been. We asked if addi-
tional guidance from any of these sources was needed. We also
sought to determine the policy for formal training; that is, how
many people had received such training in testing business applica-
tion programs and whether a need existed for formal training.

Standards for in-house ADP staff

Slightly more than half the installations had no written
(guidelines or policies to help the in-house staff test business

application programs. (See table 13.) Thus, the standards for
testing a program could range from very thorough to superficial,
depending on the preference of the staff. And since, as discussed
earlier, most business application programs are developed in-house
and are usually tested by the same staff that developed them, we
see potential problems. The in-house staff should a't least be
given minimum standards to follow when testing programs.

50

APPENDIX II I APPENDIX III

TABLE 13

Category of response Installations
Number Percent

Have standards 707 46
Have no standards 803 53
No answer 15 1 -

Total 1,525 100 -

i Standards for contractors

We asked whether contractors received guidance from the
installations when performing the testing. Most installations said
they provided testing standards for contractors to follow; only 15,
or 3 percent, of the installations said they provided no standards.
Table 14 gives a breakdown of the standards contractors used--in-
house or contractor. No answer was given to this question by 162
installations, and 914 said the question was not applicable to
them-- they do not use contractors to perform testing.

TABLE 14

Standards used for Installations
testing by contractors Number Percent

In-house standards
Contractor standards
Both in-house and

contractor standards
No standards required

Total

206 46
29 7

199 44
15 3 -

449 100 - -
Sources of written guidance on testing
of business application programs

Next, we asked if in the past these installations had received
any written guidance on the testing of business application pro-
grams, either from central Government agencies such as NBS or GSA,
or from their own department or agency. We also asked how useful
any such guidance had been. Responses showed that 760 installa-
tions had received written guidance from either NBS or GSA and 678
had received it from their own department or agency. The central
guidance was judged to be not substantially useful, while that from
individual departments and agencies was judged to be useful over-
all.

51

APPENDIX III APPENDIX III

Written guidance from NBS and GSA

Only about 39 percent, or an estimated 590 installations, had
received written guidance from NBS. (See table 15.) Table 16
shows how useful the installations considered that written guidance
to be.

TABLE 15

Category of response

Had not received guidance
Received guidance from NBS
No answer

Total

Degree of usefulness
of NBS guidance

Very great
Great
Moderate
Some
Little or no
No answer

Total

Installations
Number Percent

737 48
590 39
199 13

1,526 100 -

TABLE 16

Installations
Number

. 22 4
37 6

192 33
206 35
111 19
22 4

590 100 - ‘

52

APPENDIX III APPENDIX III

Even fewer-- about 11 percent, or 170 installations--had re-
ceived written guidance from GSA's Office of Software Development.
(See table 17.) Table 18 shows how useful that guidance was con-
sidered to be.

TABLE 17

Category of response

Had not received guidance
Received guidance from GSA
No answer

Total

Installations
Number Percent

1,091 72
170 11
265 17

1,526 100
-

TABLE 18

Degree of usefulness Installations
of GSA guidance Number Percent

Very great
Great
Moderate
Some
Little or no
No answer

15 9

17
6': 39
29 17
29 17

Total (note a) 170 100
-

z/Totals do not add due to rounding and weighting of data.

53

APPENDIX III APPENDIX III

Written guidance from department or agency

An estimated 44 percent, or 678 installations, had received
some written guidance from their department or agency on the test-
ing of business application programs. (See table 19.) overall,
the installations that had received such guidance thought it to be
of substantial use. (See table 20.)

TABLE 19

Category of response
Installations

Number Percent

Had not received
guidance

Received guidance
from own agency

No answer

Total 1,526 fi/ 100 -

$/Total does not add due to rounding and weighting of data.

TABLE 20

Degree of usefulness of
parent agency guidance

Installations
Number Percent

.

Very great 162 24
Great 162 24
Moderate 221 33
Some 74 11
Little or no 15 2
No answer 44 7

Total 678 d/ 100 - -

z/Total does not add due to rounding and weighting of data.

(Need for additional written guidance on
~ testing of business application programs

Only about one-fourth, or an estimated 398 installations,
thought there was a need for additional written guidance on the
testing of business application programs. When asked who should be
the primary source of such guidance, about a third chose NBS. Of
these, well over half had received written guidance from NBS in the
past and most had found the guidance useful.

54

APPENDIX III APPENDIX III

Another fourth of the 398 installations thought GSA's Office
of Software Development should have primary responsibility for
developing this additional written guidance. Most of these instal-
lations had not received any written guidance from that office in
the past.

We listed one other central Government agency as a possible
choice for developing additional written guidance on testing:
the Office of Management and Budget. Table 21 shows which of the
sources of guidance the installations preferred.

TABLE 21

Organization to have
primary responsibility Installations' choice

for guidance Number Percent

National Bureau of Standards 147 37
GSA's Office of Software Development 96 24
Office of Management and Budget 22 6
Other 111 28
No answer 22 6 -

Total 398 Ey 100 - -

a/Total does not add due to rounding and weighting of data.

Formal training

We believe that the amount of formal training each ADP staff
receives in either testing techniques or in using automated tools
could affect the adequacy of the testing of business application
programs. With that in mind, we asked what percentage of the ADP
staff had received formal training, and whether it was enough. We
defined the use of automated tools as (1) program instrumentation,
(2) data base extraction or generation, and (3) file comparisons in
testing. Our survey showed that 13 percent, or 199 out of 1,526
installations, use automated tools in the testing process. ADP
staff at about 24 percent of these had received formal training in
the use of automated tools, and on the average, about 30 percent of
ADP staff at each installation had formal training in testing
techniques.

Was this enough formal training in these areas? According to
our survey, the need for additional training in testing techniques
varied according to the size of the ADP staff at the installation.
As shown in table 22, the larger the staff the greater the need for
additional training.

55

APPENDIX III APPENDIX III

TABLE 22

Need

Great
Moderate
Some
Little to

no need
No answer

Total

Size of staff
Less than 10-30 31-50 Over

10 employees employees employees 50 employees
NO. II! No. B No. a - No. E

236 23 74 29 22 30 66 43
24 2 96 37 44 59 59 38

273 26 59 23 7 9 29 19

287 28 29 11 - - - -
219 21 z 2 1 1 - 1 1

1,039 100 258 100 74 a/100 -- - - s--m --- 155 a/100

&/Total does not add due to rounding and weighting of data.

We found the same results when we asked about training for
tool s-- the larger the ADP staff the greater the need for additional
training in the use of automated tools. The results of our survey
are shown in table 23.

TABLE 23

Need

Size of Staff
Less than 10-30 31-50 Over

10 employees employees employees 50 employees
NO. 1(1 No. a No. 2 No. 1

Great 235 23
Moderate 221 21
Some 243 23
Little to

no need 302 29
No answer 38 2.

Total 1,039 100 -

88 34 37 so 96 62
111 43 22 30 29 19

29 11 7 9 7 5

22 9 7 9 15 10
8 3 1 1 8 - - - - - 5 -

.
258 100 74 100 155 a/100 - - - - --

i/Total does not add due to rounding and weighting of data.

APPENDIX IV APPENDIX IV

SAMPLING METHODOLOGY, DATA COLLECTION,

QUALITY CONTROL, AND PROJECTED RESULTS

This appendix describes how we statistically sampled Federal
ADP installations, designed a questionnaire to be sent to these
installations, maintained quality control over the data thus
obtained, and made projections to the universe.

SAMPLING METHODOLOGY

The General Services Administration (GSA) had 4,423 Federal
ADP installations on file. By statistically sampling these instal-
lations, we could examine a smaller group of 600 installations (the
sample) and then draw conclusions and generalize about all 4,423
installations (the universe).

The results from this or any other statistical sample are
always subject to some uncertainty or sampling error because only
a portion of the universe has been selected for analysis. The sam-
pling error consists of two parts: confidence level and range.
The confidence level indicates the degree of confidence that can be
placed in the projections derived from the sample. The range is
within the upper and lower limit of responses andcontains the
actual universe value. For example, ourstatistical sample showed
that 207 installations had business application programs. Using
the sampling error formula, we are 95-percent confident that the
true number of installations with business application programs
would be between 1,370 and 1,682 (or within a range of 1,526
installations f 156).

DATA COLLECTION

A questionnaire was developed to record information about the
testing and maintenance of business application programs. This
questionnaire was then pretested to determine: (1) if the target
group (managers of Federal ADP installations) possessed the infor-
mation desired, (2) if the questionnaire would be burdensome on the
respondent, and (3) if the questionnaire design--including the
print size, the layout complexity, and procedures for recording
information-- was appropriate. Once it had been pretested and the
necessary changes made in its design, the questionnaire was mailed
to our sample installations.

QUALITY CONTROL

Maintaining quality control over the data was important. The
completed questionnaires were reviewed by the project manager and
staff for completeness and accuracy. The data was then keypunched
to create a computerized data base. An appropriate sample of this
data base was verified with the questionnaires. Computerized logic
checks were run to look for incorrect data, and any errors detected
were corrected.

57

APPENDIX IV APPENDIX IV

PROJECTED RESULTS

After the data base was verified, it was weighted to project
the sample results to the universe. The weight was calculated by
dividing the universe size by the the sample size (4,423/600=7.37).
That is, any condition in one of the 600 installations can be pro-
jected to 7.37 installations in the universe.

The following tables show the sampling errors for the pro-
jections found in our report.

TABLE 1

Questionnaire Responses

Universe estimate Range (95% Confidence
guestiohnaire Sample Number Percent Number Percent

Returned 477 3,516 79.5 +133 +3
Undelivered 11 81 1.8 T 44 Tl
Not returned 112 826 18.7 T128 T3

TOTAL 600 4,423 100.0 -

TABLE 2

Number of Installations with
Business Application Programs

Estimated ranges of adjusted
Projection to universe at the SB-percent

ad justed universe 1 eve1 of confidence
Number Percent Number Percent

Installations with 1,526 34 2156 +4
business appl i-
cation programs

Other installations 1,990 45. +164 +4

No answer 907 21 f133 +3

TOTAL 4,423 100 -

58

APPENDIX IV APPENDIX IV

TABLE 3

Characteristics of These
Business Application Programs

And Their Installations

Sources of business Projection to
application programs: ad justed universe

Number Percent

Installation’s ADP 541,352 69
staff

Contractor 78,251 10
Other 168,889 21

TOTAL (note a) 788,492 100 -
Primary use of business
application programs:

Management and monitor-
ing of activities
under the various
programs the agency
is authorized to
administer 183,828 24

Accounting 150,388 20
Inventory 130,126 17
Personnel 91,113 12
Payroll 46,964 6
Staff accounting 22,951 3
Other 134,271 18

Estimated ranges of
adjusted universe at
the 950percent level

of confidence
Number Percent

2157,521 +20

+ 44,933 +6
z 64,805 T8

+ 65,195
7 43,531
T 65,728
T
T

37,463
12,194

'7
3

8,236
60,132

+9
T6
T9
75
T2
Tl
T8

TOTAL (note b) 759,641 100 -

i/Total based on only those who provided val id answers. Five of
the 207, or about 2 percent, did not provide valid responses.

k/Totals based only on those who provided valid answers. Nine of
the 207, or about 4 percent, did not provide valid responses.

59

APPENDIX IV APPENDIX IV

TABLE 3 (cont.)

Size of ADP staff:

Fewer than 10
employees

10 to 30
employees

31 to 50
employees

Over 50
employees

TOTAL

Amount of time devoted
to maintenance:

10 percent or less 376
11 to 20 percent 162
21 to 50 percent 582
51 to 100 percent 199
Unknown 206

TOTAL a/1,526 100.0

Amount of time devoted
to testing:

10 percent or less 678
11 to 20 percent 302
21 to 50 percent 265
51 to 100 percent 52
Unknown 229

Projection to
adjusted universe
Number Percent

1,039

258

74

155

1,526

28.5
12.3
44.1
15.1

52.3
23.3
20.4

4.0

Estimated ranges of
adjusted universe at
the 950percent level

of cbnfidence
Number Percent

2140 +9

+ 77 +5

+ 42 +3

+ 60 +4

+ 92
T 62
Till
T 68
'/ 69

+119
T 83
T 78
T 35
T 73

TOTAL 1,526 100.0

d/ Total does not add due to rounding and weighting of data.

+7
-is
T8
T5

+9
-i6
T6
T3

60

APPENDIX IV APPENDIX IV

TABLE 4

Programs Requiring
Maintenance At Least Once

Types of maintenance

Changes to remove
defects in program

Changes to keep tables
and codes current

Changes to enhance the
program beyond the
original design
objectives

Changes due to
upgraded hardware
or software

Changes due to legis-
1 at ion and/or regu-
lations

Other

Projection to
adjusted universe

Percent
Number

119,599

113,566

173,086

133,840

82,136

13,552

(note a)

15

14

Number

+ 69,190

+ 38,571

Percent

+9

+5

21 + 59,490 +7

16 2 58,200 +7

10 + 27,724 +3

2 + 17,644 +2

Estimated ranges of
adjusted universe at
the 95-percent level

of confidence

~ a/Percentages are based on 812,171 estimated programs at the
I installations. Percentages are not cumulative since each program

could have been listed under each type of maintenance.

61

APPENDIX IV APPENDIX IV

TABLE 5
Resources Avm for Testing

Business Application Programs

Projection to
adjusted universe
Number Percent

Estimated ranges of
adjusted universe at
the 95-percent level

of confidence
Number Percent

62 +135 +9
27 T 95 -i6
10 T 59 T4

2 'i: 27 T2

Computer time:

More than adequate
Adequate
Less than adequate
No answer

944
405
147
29

TOTAL

Staff:

+ 79
+112
Tl14
T 33

+5
77
T7
'32

More than adequate 273 18
Adequate 590 39
Less than adequate 619 41
No answer 44 3

20 + 84
49 7: 123
25 7: 93

6 z 46

TOTAL

Funds:

+6
78
T6
T3

More than adequate 310
Adequate 744
Less than adequate 383
No answer 88

TOTAL

Time allotted by users
for testing business
application programs:

More than needed 44 3
About right 980 64
Less than needed 442 29
No answer 59 4

+ 33 +2
‘i 137 ‘is
7: 99 T7
z 38 T3

u TOTAL d/

a/Total does not add due to rounding and weighting of data.

62

APPENDIX IV APPENDIX IV

TABLE 6
Resources Avm for Testing

Business Application Programs

Computer time:

More than adequate
Adequate
Less than adequate
No answer

TOTAL

Staff:

More than adequate 273 18 + 79
Adequate 590 39 -7112
Less than adequate 619 41 Tl14
No answer 44 3 lir 33

TOTAL 1,526

Funds:

More than *adequate 310 20 t 84
Adequate 744 49 T 123
Less than adequate 383 25 T 93
No answer 88 6 z 46

TOTAL 1.526 100

Time allotted by users
for testing business
application programs:

More than needed 44 3
About right 980 64
Less than needed 442 29
No answer 59 4

Projection to
adjusted universe
Number Percent

944
405
147

29

62 +135 +9
27 -7 95 +6
10 Tc: 59 T4

2 T 27 22

1,526 100
d/ - fi/ =

100
g -

TOTAL

Estimated ranges of
adjusted universe at
the 95-Percent level

of confidence
Number Percent

t5
T7
T7
-i2

+6
7r8
76
'73

+ 33 +2
T 137 T9
T 99 +7
z 38 +3

a/Total does not add due to rounding and weighting of data.

63

m iteration Washingty, DC -20405

Honorable Charles A. Bowsher
Comptroller General of the United States
U.S. General Accounting Office
Washington, D.C. 20548

Dear Mr. Bowsher:

We have reviewed the draft General Accounting Office report,
"Greater Emphasis on Testing Needed to Make Computer Software
More Reliable and Less Costly" (GAO/IMTEC-83-3). The General
Services Administration (GSA) is in total agreement with the
report's findings and recommendations.

GSA established the Office of Software Development and
Information Technology to provide assistance to agencies in
accepting and using state-of-the-art software technology. To
accomplish this, we have been assisting agencies in developing soft-
ware quality assurance programs that make use of software tools
and ensure the acquisition of software that has been adequately
tested to meet requirements and standards. We have also been
providing training on software tools methodology, selection, and
installation.

We periodically document these assistance projects in reports
that are aimed at providing other agencies with information on
ways in which their ADP costs can be reduced through software
testing and the use of software tools. Such reports have
included: "A Software Tools Project: A Means of Capturing
Technology and Improving Engineering" (OSD-82-lOl), "Establishing
a Software Engineering Technology" (OSD/FSTC-83/014), and
"Software Tools Survey" (OSD/FSTC-83/015).

In summary, we feel that improved.software testing can signifi-
cantly reduce Federal ADP costs. We at GSA will continue our
efforts to help agencies realize these savings.

(913667)
64’

.

.

AN EQUAL OPPORTUNITY EMPLOYER

UNITEDSTATES
GENEXALACCOUNTINCOFFICE

WASHINGTON,D.C 20548

OFb'ICIAL BUSINESS
PENALTY b+OR PRIVATE UWE.S~UNI

POSTAGE AND FEES PAID
U. 8. GENERAL ACCOUNTING OFFICE

THIRD CLASS

. I

